1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
%global _empty_manifest_terminate_build 0
Name: python-pm4py
Version: 2.7.3
Release: 1
Summary: Process mining for Python
License: GPL 3.0
URL: http://www.pm4py.org
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/85/73/ca654c443acda5d5bb059a77b94048d6fee95b485ac2a8f49d77a67c48a9/pm4py-2.7.3.tar.gz
BuildArch: noarch
Requires: python3-deprecation
Requires: python3-graphviz
Requires: python3-intervaltree
Requires: python3-lxml
Requires: python3-matplotlib
Requires: python3-networkx
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-pydotplus
Requires: python3-pytz
Requires: python3-scipy
Requires: python3-stringdist
Requires: python3-tqdm
Requires: python3-cvxopt
Requires: python3-cvxopt
%description
# pm4py
pm4py is a python library that supports (state-of-the-art) process mining algorithms in python.
It is open source (licensed under GPL) and intended to be used in both academia and industry projects.
pm4py is a product of the Fraunhofer Institute for Applied Information Technology.
## Documentation / API
The full documentation of pm4py can be found at http://pm4py.org/
## First Example
A very simple example, to whet your appetite:
import pm4py
if __name__ == "__main__":
log = pm4py.read_xes('<path-to-xes-log-file.xes>')
net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log)
pm4py.view_petri_net(net, initial_marking, final_marking, format="svg")
## Installation
pm4py can be installed on Python 3.8.x / 3.9.x / 3.10.x / 3.11.x by invoking:
*pip install -U pm4py*
## Requirements
pm4py depends on some other Python packages, with different levels of importance:
* *Essential requirements*: numpy, pandas, deprecation, networkx
* *Normal requirements* (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm
* *Optional requirements* (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar
## Release Notes
To track the incremental updates, please refer to the *CHANGELOG* file.
## Third Party Dependencies
As scientific library in the Python ecosystem, we rely on external libraries to offer our features.
In the */third_party* folder, we list all the licenses of our direct dependencies.
Please check the */third_party/LICENSES_TRANSITIVE* file to get a full list of all transitive dependencies and the corresponding license.
## Citing pm4py
If you are using pm4py in your scientific work, please cite pm4py as follows:
Berti, A., van Zelst, S.J., van der Aalst, W.M.P. (2019): Process Mining for Python (PM4Py): Bridging the Gap Between Process-and Data Science. In: Proceedings of the ICPM Demo Track 2019, co-located with 1st International Conference on Process Mining (ICPM 2019), Aachen, Germany, June 24-26, 2019. pp. 13-16 (2019). http://ceur-ws.org/Vol-2374/
%package -n python3-pm4py
Summary: Process mining for Python
Provides: python-pm4py
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pm4py
# pm4py
pm4py is a python library that supports (state-of-the-art) process mining algorithms in python.
It is open source (licensed under GPL) and intended to be used in both academia and industry projects.
pm4py is a product of the Fraunhofer Institute for Applied Information Technology.
## Documentation / API
The full documentation of pm4py can be found at http://pm4py.org/
## First Example
A very simple example, to whet your appetite:
import pm4py
if __name__ == "__main__":
log = pm4py.read_xes('<path-to-xes-log-file.xes>')
net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log)
pm4py.view_petri_net(net, initial_marking, final_marking, format="svg")
## Installation
pm4py can be installed on Python 3.8.x / 3.9.x / 3.10.x / 3.11.x by invoking:
*pip install -U pm4py*
## Requirements
pm4py depends on some other Python packages, with different levels of importance:
* *Essential requirements*: numpy, pandas, deprecation, networkx
* *Normal requirements* (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm
* *Optional requirements* (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar
## Release Notes
To track the incremental updates, please refer to the *CHANGELOG* file.
## Third Party Dependencies
As scientific library in the Python ecosystem, we rely on external libraries to offer our features.
In the */third_party* folder, we list all the licenses of our direct dependencies.
Please check the */third_party/LICENSES_TRANSITIVE* file to get a full list of all transitive dependencies and the corresponding license.
## Citing pm4py
If you are using pm4py in your scientific work, please cite pm4py as follows:
Berti, A., van Zelst, S.J., van der Aalst, W.M.P. (2019): Process Mining for Python (PM4Py): Bridging the Gap Between Process-and Data Science. In: Proceedings of the ICPM Demo Track 2019, co-located with 1st International Conference on Process Mining (ICPM 2019), Aachen, Germany, June 24-26, 2019. pp. 13-16 (2019). http://ceur-ws.org/Vol-2374/
%package help
Summary: Development documents and examples for pm4py
Provides: python3-pm4py-doc
%description help
# pm4py
pm4py is a python library that supports (state-of-the-art) process mining algorithms in python.
It is open source (licensed under GPL) and intended to be used in both academia and industry projects.
pm4py is a product of the Fraunhofer Institute for Applied Information Technology.
## Documentation / API
The full documentation of pm4py can be found at http://pm4py.org/
## First Example
A very simple example, to whet your appetite:
import pm4py
if __name__ == "__main__":
log = pm4py.read_xes('<path-to-xes-log-file.xes>')
net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log)
pm4py.view_petri_net(net, initial_marking, final_marking, format="svg")
## Installation
pm4py can be installed on Python 3.8.x / 3.9.x / 3.10.x / 3.11.x by invoking:
*pip install -U pm4py*
## Requirements
pm4py depends on some other Python packages, with different levels of importance:
* *Essential requirements*: numpy, pandas, deprecation, networkx
* *Normal requirements* (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm
* *Optional requirements* (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar
## Release Notes
To track the incremental updates, please refer to the *CHANGELOG* file.
## Third Party Dependencies
As scientific library in the Python ecosystem, we rely on external libraries to offer our features.
In the */third_party* folder, we list all the licenses of our direct dependencies.
Please check the */third_party/LICENSES_TRANSITIVE* file to get a full list of all transitive dependencies and the corresponding license.
## Citing pm4py
If you are using pm4py in your scientific work, please cite pm4py as follows:
Berti, A., van Zelst, S.J., van der Aalst, W.M.P. (2019): Process Mining for Python (PM4Py): Bridging the Gap Between Process-and Data Science. In: Proceedings of the ICPM Demo Track 2019, co-located with 1st International Conference on Process Mining (ICPM 2019), Aachen, Germany, June 24-26, 2019. pp. 13-16 (2019). http://ceur-ws.org/Vol-2374/
%prep
%autosetup -n pm4py-2.7.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pm4py -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 2.7.3-1
- Package Spec generated
|