summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 10:27:35 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 10:27:35 +0000
commitea41d25bd9a55e395357f0558caf07a6aa6c58f4 (patch)
tree0cab40138c5cd3ef80dac98cda5466c66566d82f
parent22d4745d7874ecac34d7ef3da09b788ef5e29952 (diff)
automatic import of python-pmdarima
-rw-r--r--.gitignore1
-rw-r--r--python-pmdarima.spec524
-rw-r--r--sources1
3 files changed, 526 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..d40499e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/pmdarima-2.0.3.tar.gz
diff --git a/python-pmdarima.spec b/python-pmdarima.spec
new file mode 100644
index 0000000..4edf663
--- /dev/null
+++ b/python-pmdarima.spec
@@ -0,0 +1,524 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pmdarima
+Version: 2.0.3
+Release: 1
+Summary: Python's forecast::auto.arima equivalent
+License: MIT
+URL: http://alkaline-ml.com/pmdarima
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/61/05/0690150bb6784db4d30fcde6062e9410597f767f024a0d1a5fd850804ec9/pmdarima-2.0.3.tar.gz
+
+Requires: python3-joblib
+Requires: python3-Cython
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-scikit-learn
+Requires: python3-scipy
+Requires: python3-statsmodels
+Requires: python3-urllib3
+Requires: python3-setuptools
+
+%description
+# pmdarima
+
+[![PyPI version](https://badge.fury.io/py/pmdarima.svg)](https://badge.fury.io/py/pmdarima)
+[![CircleCI](https://circleci.com/gh/alkaline-ml/pmdarima.svg?style=svg)](https://circleci.com/gh/alkaline-ml/pmdarima)
+[![Github Actions Status](https://github.com/alkaline-ml/pmdarima/workflows/Mac%20and%20Windows%20Builds/badge.svg?branch=master)](https://github.com/alkaline-ml/pmdarima/actions?query=workflow%3A%22Mac+and+Windows+Builds%22+branch%3Amaster)
+[![codecov](https://codecov.io/gh/alkaline-ml/pmdarima/branch/master/graph/badge.svg)](https://codecov.io/gh/alkaline-ml/pmdarima)
+![Supported versions](https://img.shields.io/badge/python-3.7+-blue.svg)
+![Downloads](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads&query=%24.total&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
+![Downloads/Week](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads%2Fweek&query=%24.weekly&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
+
+Pmdarima (originally `pyramid-arima`, for the anagram of 'py' + 'arima') is a statistical
+library designed to fill the void in Python's time series analysis capabilities. This includes:
+
+ * The equivalent of R's [`auto.arima`](https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima) functionality
+ * A collection of statistical tests of stationarity and seasonality
+ * Time series utilities, such as differencing and inverse differencing
+ * Numerous endogenous and exogenous transformers and featurizers, including Box-Cox and Fourier transformations
+ * Seasonal time series decompositions
+ * Cross-validation utilities
+ * A rich collection of built-in time series datasets for prototyping and examples
+ * Scikit-learn-esque pipelines to consolidate your estimators and promote productionization
+
+Pmdarima wraps [statsmodels](https://github.com/statsmodels/statsmodels/blob/master/statsmodels)
+under the hood, but is designed with an interface that's familiar to users coming
+from a scikit-learn background.
+
+## Installation
+
+### pip
+
+Pmdarima has binary and source distributions for Windows, Mac and Linux (`manylinux`) on pypi
+under the package name `pmdarima` and can be downloaded via `pip`:
+
+```bash
+pip install pmdarima
+```
+
+### conda
+
+Pmdarima also has Mac and Linux builds available via `conda` and can be installed like so:
+
+```bash
+conda config --add channels conda-forge
+conda config --set channel_priority strict
+conda install pmdarima
+```
+
+**Note:** We do not maintain our own Conda binaries, they are maintained at https://github.com/conda-forge/pmdarima-feedstock.
+See that repo for further documentation on working with Pmdarima on Conda.
+
+## Quickstart Examples
+
+Fitting a simple auto-ARIMA on the [`wineind`](https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.datasets.load_wineind.html#pmdarima.datasets.load_wineind) dataset:
+
+```python
+import pmdarima as pm
+from pmdarima.model_selection import train_test_split
+import numpy as np
+import matplotlib.pyplot as plt
+
+# Load/split your data
+y = pm.datasets.load_wineind()
+train, test = train_test_split(y, train_size=150)
+
+# Fit your model
+model = pm.auto_arima(train, seasonal=True, m=12)
+
+# make your forecasts
+forecasts = model.predict(test.shape[0]) # predict N steps into the future
+
+# Visualize the forecasts (blue=train, green=forecasts)
+x = np.arange(y.shape[0])
+plt.plot(x[:150], train, c='blue')
+plt.plot(x[150:], forecasts, c='green')
+plt.show()
+```
+
+<img src="http://alkaline-ml.com/img/static/pmdarima_readme_example1.png" alt="Wineind example"/>
+
+
+Fitting a more complex pipeline on the [`sunspots`](https://www.rdocumentation.org/packages/datasets/versions/3.6.1/topics/sunspots) dataset,
+serializing it, and then loading it from disk to make predictions:
+
+```python
+import pmdarima as pm
+from pmdarima.model_selection import train_test_split
+from pmdarima.pipeline import Pipeline
+from pmdarima.preprocessing import BoxCoxEndogTransformer
+import pickle
+
+# Load/split your data
+y = pm.datasets.load_sunspots()
+train, test = train_test_split(y, train_size=2700)
+
+# Define and fit your pipeline
+pipeline = Pipeline([
+ ('boxcox', BoxCoxEndogTransformer(lmbda2=1e-6)), # lmbda2 avoids negative values
+ ('arima', pm.AutoARIMA(seasonal=True, m=12,
+ suppress_warnings=True,
+ trace=True))
+])
+
+pipeline.fit(train)
+
+# Serialize your model just like you would in scikit:
+with open('model.pkl', 'wb') as pkl:
+ pickle.dump(pipeline, pkl)
+
+# Load it and make predictions seamlessly:
+with open('model.pkl', 'rb') as pkl:
+ mod = pickle.load(pkl)
+ print(mod.predict(15))
+# [25.20580375 25.05573898 24.4263037 23.56766793 22.67463049 21.82231043
+# 21.04061069 20.33693017 19.70906027 19.1509862 18.6555793 18.21577243
+# 17.8250318 17.47750614 17.16803394]
+```
+
+
+### Availability
+
+`pmdarima` is available on PyPi in pre-built Wheel files for Python 3.7+ for the following platforms:
+
+* Mac (64-bit)
+* Linux (64-bit manylinux)
+* Windows (64-bit)
+ * 32-bit wheels are available for pmdarima versions below 2.0.0 and Python versions below 3.10
+
+If a wheel doesn't exist for your platform, you can still `pip install` and it
+will build from the source distribution tarball, however you'll need `cython>=0.29`
+and `gcc` (Mac/Linux) or `MinGW` (Windows) in order to build the package from source.
+
+Note that legacy versions (<1.0.0) are available under the name
+"`pyramid-arima`" and can be pip installed via:
+
+```bash
+# Legacy warning:
+$ pip install pyramid-arima
+# python -c 'import pyramid;'
+```
+
+However, this is not recommended.
+
+## Documentation
+
+All of your questions and more (including examples and guides) can be answered by
+the [`pmdarima` documentation](https://www.alkaline-ml.com/pmdarima). If not, always
+feel free to file an issue.
+
+
+%package -n python3-pmdarima
+Summary: Python's forecast::auto.arima equivalent
+Provides: python-pmdarima
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+BuildRequires: python3-cffi
+BuildRequires: gcc
+BuildRequires: gdb
+%description -n python3-pmdarima
+# pmdarima
+
+[![PyPI version](https://badge.fury.io/py/pmdarima.svg)](https://badge.fury.io/py/pmdarima)
+[![CircleCI](https://circleci.com/gh/alkaline-ml/pmdarima.svg?style=svg)](https://circleci.com/gh/alkaline-ml/pmdarima)
+[![Github Actions Status](https://github.com/alkaline-ml/pmdarima/workflows/Mac%20and%20Windows%20Builds/badge.svg?branch=master)](https://github.com/alkaline-ml/pmdarima/actions?query=workflow%3A%22Mac+and+Windows+Builds%22+branch%3Amaster)
+[![codecov](https://codecov.io/gh/alkaline-ml/pmdarima/branch/master/graph/badge.svg)](https://codecov.io/gh/alkaline-ml/pmdarima)
+![Supported versions](https://img.shields.io/badge/python-3.7+-blue.svg)
+![Downloads](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads&query=%24.total&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
+![Downloads/Week](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads%2Fweek&query=%24.weekly&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
+
+Pmdarima (originally `pyramid-arima`, for the anagram of 'py' + 'arima') is a statistical
+library designed to fill the void in Python's time series analysis capabilities. This includes:
+
+ * The equivalent of R's [`auto.arima`](https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima) functionality
+ * A collection of statistical tests of stationarity and seasonality
+ * Time series utilities, such as differencing and inverse differencing
+ * Numerous endogenous and exogenous transformers and featurizers, including Box-Cox and Fourier transformations
+ * Seasonal time series decompositions
+ * Cross-validation utilities
+ * A rich collection of built-in time series datasets for prototyping and examples
+ * Scikit-learn-esque pipelines to consolidate your estimators and promote productionization
+
+Pmdarima wraps [statsmodels](https://github.com/statsmodels/statsmodels/blob/master/statsmodels)
+under the hood, but is designed with an interface that's familiar to users coming
+from a scikit-learn background.
+
+## Installation
+
+### pip
+
+Pmdarima has binary and source distributions for Windows, Mac and Linux (`manylinux`) on pypi
+under the package name `pmdarima` and can be downloaded via `pip`:
+
+```bash
+pip install pmdarima
+```
+
+### conda
+
+Pmdarima also has Mac and Linux builds available via `conda` and can be installed like so:
+
+```bash
+conda config --add channels conda-forge
+conda config --set channel_priority strict
+conda install pmdarima
+```
+
+**Note:** We do not maintain our own Conda binaries, they are maintained at https://github.com/conda-forge/pmdarima-feedstock.
+See that repo for further documentation on working with Pmdarima on Conda.
+
+## Quickstart Examples
+
+Fitting a simple auto-ARIMA on the [`wineind`](https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.datasets.load_wineind.html#pmdarima.datasets.load_wineind) dataset:
+
+```python
+import pmdarima as pm
+from pmdarima.model_selection import train_test_split
+import numpy as np
+import matplotlib.pyplot as plt
+
+# Load/split your data
+y = pm.datasets.load_wineind()
+train, test = train_test_split(y, train_size=150)
+
+# Fit your model
+model = pm.auto_arima(train, seasonal=True, m=12)
+
+# make your forecasts
+forecasts = model.predict(test.shape[0]) # predict N steps into the future
+
+# Visualize the forecasts (blue=train, green=forecasts)
+x = np.arange(y.shape[0])
+plt.plot(x[:150], train, c='blue')
+plt.plot(x[150:], forecasts, c='green')
+plt.show()
+```
+
+<img src="http://alkaline-ml.com/img/static/pmdarima_readme_example1.png" alt="Wineind example"/>
+
+
+Fitting a more complex pipeline on the [`sunspots`](https://www.rdocumentation.org/packages/datasets/versions/3.6.1/topics/sunspots) dataset,
+serializing it, and then loading it from disk to make predictions:
+
+```python
+import pmdarima as pm
+from pmdarima.model_selection import train_test_split
+from pmdarima.pipeline import Pipeline
+from pmdarima.preprocessing import BoxCoxEndogTransformer
+import pickle
+
+# Load/split your data
+y = pm.datasets.load_sunspots()
+train, test = train_test_split(y, train_size=2700)
+
+# Define and fit your pipeline
+pipeline = Pipeline([
+ ('boxcox', BoxCoxEndogTransformer(lmbda2=1e-6)), # lmbda2 avoids negative values
+ ('arima', pm.AutoARIMA(seasonal=True, m=12,
+ suppress_warnings=True,
+ trace=True))
+])
+
+pipeline.fit(train)
+
+# Serialize your model just like you would in scikit:
+with open('model.pkl', 'wb') as pkl:
+ pickle.dump(pipeline, pkl)
+
+# Load it and make predictions seamlessly:
+with open('model.pkl', 'rb') as pkl:
+ mod = pickle.load(pkl)
+ print(mod.predict(15))
+# [25.20580375 25.05573898 24.4263037 23.56766793 22.67463049 21.82231043
+# 21.04061069 20.33693017 19.70906027 19.1509862 18.6555793 18.21577243
+# 17.8250318 17.47750614 17.16803394]
+```
+
+
+### Availability
+
+`pmdarima` is available on PyPi in pre-built Wheel files for Python 3.7+ for the following platforms:
+
+* Mac (64-bit)
+* Linux (64-bit manylinux)
+* Windows (64-bit)
+ * 32-bit wheels are available for pmdarima versions below 2.0.0 and Python versions below 3.10
+
+If a wheel doesn't exist for your platform, you can still `pip install` and it
+will build from the source distribution tarball, however you'll need `cython>=0.29`
+and `gcc` (Mac/Linux) or `MinGW` (Windows) in order to build the package from source.
+
+Note that legacy versions (<1.0.0) are available under the name
+"`pyramid-arima`" and can be pip installed via:
+
+```bash
+# Legacy warning:
+$ pip install pyramid-arima
+# python -c 'import pyramid;'
+```
+
+However, this is not recommended.
+
+## Documentation
+
+All of your questions and more (including examples and guides) can be answered by
+the [`pmdarima` documentation](https://www.alkaline-ml.com/pmdarima). If not, always
+feel free to file an issue.
+
+
+%package help
+Summary: Development documents and examples for pmdarima
+Provides: python3-pmdarima-doc
+%description help
+# pmdarima
+
+[![PyPI version](https://badge.fury.io/py/pmdarima.svg)](https://badge.fury.io/py/pmdarima)
+[![CircleCI](https://circleci.com/gh/alkaline-ml/pmdarima.svg?style=svg)](https://circleci.com/gh/alkaline-ml/pmdarima)
+[![Github Actions Status](https://github.com/alkaline-ml/pmdarima/workflows/Mac%20and%20Windows%20Builds/badge.svg?branch=master)](https://github.com/alkaline-ml/pmdarima/actions?query=workflow%3A%22Mac+and+Windows+Builds%22+branch%3Amaster)
+[![codecov](https://codecov.io/gh/alkaline-ml/pmdarima/branch/master/graph/badge.svg)](https://codecov.io/gh/alkaline-ml/pmdarima)
+![Supported versions](https://img.shields.io/badge/python-3.7+-blue.svg)
+![Downloads](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads&query=%24.total&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
+![Downloads/Week](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads%2Fweek&query=%24.weekly&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
+
+Pmdarima (originally `pyramid-arima`, for the anagram of 'py' + 'arima') is a statistical
+library designed to fill the void in Python's time series analysis capabilities. This includes:
+
+ * The equivalent of R's [`auto.arima`](https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima) functionality
+ * A collection of statistical tests of stationarity and seasonality
+ * Time series utilities, such as differencing and inverse differencing
+ * Numerous endogenous and exogenous transformers and featurizers, including Box-Cox and Fourier transformations
+ * Seasonal time series decompositions
+ * Cross-validation utilities
+ * A rich collection of built-in time series datasets for prototyping and examples
+ * Scikit-learn-esque pipelines to consolidate your estimators and promote productionization
+
+Pmdarima wraps [statsmodels](https://github.com/statsmodels/statsmodels/blob/master/statsmodels)
+under the hood, but is designed with an interface that's familiar to users coming
+from a scikit-learn background.
+
+## Installation
+
+### pip
+
+Pmdarima has binary and source distributions for Windows, Mac and Linux (`manylinux`) on pypi
+under the package name `pmdarima` and can be downloaded via `pip`:
+
+```bash
+pip install pmdarima
+```
+
+### conda
+
+Pmdarima also has Mac and Linux builds available via `conda` and can be installed like so:
+
+```bash
+conda config --add channels conda-forge
+conda config --set channel_priority strict
+conda install pmdarima
+```
+
+**Note:** We do not maintain our own Conda binaries, they are maintained at https://github.com/conda-forge/pmdarima-feedstock.
+See that repo for further documentation on working with Pmdarima on Conda.
+
+## Quickstart Examples
+
+Fitting a simple auto-ARIMA on the [`wineind`](https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.datasets.load_wineind.html#pmdarima.datasets.load_wineind) dataset:
+
+```python
+import pmdarima as pm
+from pmdarima.model_selection import train_test_split
+import numpy as np
+import matplotlib.pyplot as plt
+
+# Load/split your data
+y = pm.datasets.load_wineind()
+train, test = train_test_split(y, train_size=150)
+
+# Fit your model
+model = pm.auto_arima(train, seasonal=True, m=12)
+
+# make your forecasts
+forecasts = model.predict(test.shape[0]) # predict N steps into the future
+
+# Visualize the forecasts (blue=train, green=forecasts)
+x = np.arange(y.shape[0])
+plt.plot(x[:150], train, c='blue')
+plt.plot(x[150:], forecasts, c='green')
+plt.show()
+```
+
+<img src="http://alkaline-ml.com/img/static/pmdarima_readme_example1.png" alt="Wineind example"/>
+
+
+Fitting a more complex pipeline on the [`sunspots`](https://www.rdocumentation.org/packages/datasets/versions/3.6.1/topics/sunspots) dataset,
+serializing it, and then loading it from disk to make predictions:
+
+```python
+import pmdarima as pm
+from pmdarima.model_selection import train_test_split
+from pmdarima.pipeline import Pipeline
+from pmdarima.preprocessing import BoxCoxEndogTransformer
+import pickle
+
+# Load/split your data
+y = pm.datasets.load_sunspots()
+train, test = train_test_split(y, train_size=2700)
+
+# Define and fit your pipeline
+pipeline = Pipeline([
+ ('boxcox', BoxCoxEndogTransformer(lmbda2=1e-6)), # lmbda2 avoids negative values
+ ('arima', pm.AutoARIMA(seasonal=True, m=12,
+ suppress_warnings=True,
+ trace=True))
+])
+
+pipeline.fit(train)
+
+# Serialize your model just like you would in scikit:
+with open('model.pkl', 'wb') as pkl:
+ pickle.dump(pipeline, pkl)
+
+# Load it and make predictions seamlessly:
+with open('model.pkl', 'rb') as pkl:
+ mod = pickle.load(pkl)
+ print(mod.predict(15))
+# [25.20580375 25.05573898 24.4263037 23.56766793 22.67463049 21.82231043
+# 21.04061069 20.33693017 19.70906027 19.1509862 18.6555793 18.21577243
+# 17.8250318 17.47750614 17.16803394]
+```
+
+
+### Availability
+
+`pmdarima` is available on PyPi in pre-built Wheel files for Python 3.7+ for the following platforms:
+
+* Mac (64-bit)
+* Linux (64-bit manylinux)
+* Windows (64-bit)
+ * 32-bit wheels are available for pmdarima versions below 2.0.0 and Python versions below 3.10
+
+If a wheel doesn't exist for your platform, you can still `pip install` and it
+will build from the source distribution tarball, however you'll need `cython>=0.29`
+and `gcc` (Mac/Linux) or `MinGW` (Windows) in order to build the package from source.
+
+Note that legacy versions (<1.0.0) are available under the name
+"`pyramid-arima`" and can be pip installed via:
+
+```bash
+# Legacy warning:
+$ pip install pyramid-arima
+# python -c 'import pyramid;'
+```
+
+However, this is not recommended.
+
+## Documentation
+
+All of your questions and more (including examples and guides) can be answered by
+the [`pmdarima` documentation](https://www.alkaline-ml.com/pmdarima). If not, always
+feel free to file an issue.
+
+
+%prep
+%autosetup -n pmdarima-2.0.3
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pmdarima -f filelist.lst
+%dir %{python3_sitearch}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.3-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..748b307
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+257ebfb92e3abc2fab71b7d3f1140efb pmdarima-2.0.3.tar.gz