summaryrefslogtreecommitdiff
path: root/python-pqkmeans.spec
blob: c87568e96d46a5bac5723a63c3620fcd8c573921 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
%global _empty_manifest_terminate_build 0
Name:		python-pqkmeans
Version:	1.0.5
Release:	1
Summary:	Fast and memory-efficient clustering
License:	MIT License
URL:		http://yusukematsui.me/project/pqkmeans/pqkmeans.html
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/18/0e/0f5437c5e6aa3780b8816c93ae9d21f1fea00339e16c1779485e9091fd14/pqkmeans-1.0.5.tar.gz
BuildArch:	noarch


%description
PQk-means [Matsui, Ogaki, Yamasaki, and Aizawa, ACMMM 17] is a Python library for efficient clustering of large-scale data. By first compressing input vectors into short product-quantized (PQ) codes, PQk-means achieves fast and memory-efficient clustering, even for high-dimensional vectors. Similar to k-means, PQk-means repeats the assignment and update steps, both of which can be performed in the PQ-code domain.
For a comparison, we provide the ITQ encoding for the binary conversion and Binary k-means [Gong+, CVPR 15] for the clustering of binary codes.
The library is written in C++ for the main algorithm with wrappers for Python. All encoding/clustering codes are compatible with scikit-learn.

%package -n python3-pqkmeans
Summary:	Fast and memory-efficient clustering
Provides:	python-pqkmeans
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pqkmeans
PQk-means [Matsui, Ogaki, Yamasaki, and Aizawa, ACMMM 17] is a Python library for efficient clustering of large-scale data. By first compressing input vectors into short product-quantized (PQ) codes, PQk-means achieves fast and memory-efficient clustering, even for high-dimensional vectors. Similar to k-means, PQk-means repeats the assignment and update steps, both of which can be performed in the PQ-code domain.
For a comparison, we provide the ITQ encoding for the binary conversion and Binary k-means [Gong+, CVPR 15] for the clustering of binary codes.
The library is written in C++ for the main algorithm with wrappers for Python. All encoding/clustering codes are compatible with scikit-learn.

%package help
Summary:	Development documents and examples for pqkmeans
Provides:	python3-pqkmeans-doc
%description help
PQk-means [Matsui, Ogaki, Yamasaki, and Aizawa, ACMMM 17] is a Python library for efficient clustering of large-scale data. By first compressing input vectors into short product-quantized (PQ) codes, PQk-means achieves fast and memory-efficient clustering, even for high-dimensional vectors. Similar to k-means, PQk-means repeats the assignment and update steps, both of which can be performed in the PQ-code domain.
For a comparison, we provide the ITQ encoding for the binary conversion and Binary k-means [Gong+, CVPR 15] for the clustering of binary codes.
The library is written in C++ for the main algorithm with wrappers for Python. All encoding/clustering codes are compatible with scikit-learn.

%prep
%autosetup -n pqkmeans-1.0.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pqkmeans -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.5-1
- Package Spec generated