diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-15 06:40:08 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-15 06:40:08 +0000 |
| commit | ca3593f238c9554f6d503c9fb24b2155729f0209 (patch) | |
| tree | 9d0b94bd9ae21157ebd0e62b900bfef2a57629b0 | |
| parent | 3836f191fa7b8334c7049f24fdb863ce33503a38 (diff) | |
automatic import of python-properscoring
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-properscoring.spec | 99 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 101 insertions, 0 deletions
@@ -0,0 +1 @@ +/properscoring-0.1.tar.gz diff --git a/python-properscoring.spec b/python-properscoring.spec new file mode 100644 index 0000000..aa2bfb0 --- /dev/null +++ b/python-properscoring.spec @@ -0,0 +1,99 @@ +%global _empty_manifest_terminate_build 0 +Name: python-properscoring +Version: 0.1 +Release: 1 +Summary: Proper scoring rules in Python +License: Apache +URL: https://github.com/TheClimateCorporation/properscoring +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/38/ac/513d2c8653ab6bc66c4502372e6e4e20ce6a136cde4c1ba9908ec36e34c1/properscoring-0.1.tar.gz +BuildArch: noarch + + +%description +`Proper scoring rules`_ for evaluating probabilistic forecasts in Python. +Evaluation methods that are "strictly proper" cannot be artificially improved +through hedging, which makes them fair methods for accessing the accuracy of +probabilistic forecasts. In particular, these rules are often used for +evaluating weather forecasts. +properscoring runs on both Python 2 and 3. It requires NumPy (1.8 or +later) and SciPy (any recent version should be fine). Numba is optional, +but highly encouraged: it enables significant speedups (e.g., 20x faster) +for ``crps_ensemble`` and ``threshold_brier_score``. +To install, use pip: ``pip install properscoring``. + +%package -n python3-properscoring +Summary: Proper scoring rules in Python +Provides: python-properscoring +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-properscoring +`Proper scoring rules`_ for evaluating probabilistic forecasts in Python. +Evaluation methods that are "strictly proper" cannot be artificially improved +through hedging, which makes them fair methods for accessing the accuracy of +probabilistic forecasts. In particular, these rules are often used for +evaluating weather forecasts. +properscoring runs on both Python 2 and 3. It requires NumPy (1.8 or +later) and SciPy (any recent version should be fine). Numba is optional, +but highly encouraged: it enables significant speedups (e.g., 20x faster) +for ``crps_ensemble`` and ``threshold_brier_score``. +To install, use pip: ``pip install properscoring``. + +%package help +Summary: Development documents and examples for properscoring +Provides: python3-properscoring-doc +%description help +`Proper scoring rules`_ for evaluating probabilistic forecasts in Python. +Evaluation methods that are "strictly proper" cannot be artificially improved +through hedging, which makes them fair methods for accessing the accuracy of +probabilistic forecasts. In particular, these rules are often used for +evaluating weather forecasts. +properscoring runs on both Python 2 and 3. It requires NumPy (1.8 or +later) and SciPy (any recent version should be fine). Numba is optional, +but highly encouraged: it enables significant speedups (e.g., 20x faster) +for ``crps_ensemble`` and ``threshold_brier_score``. +To install, use pip: ``pip install properscoring``. + +%prep +%autosetup -n properscoring-0.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-properscoring -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1-1 +- Package Spec generated @@ -0,0 +1 @@ +f1fe6cc96c24713a28886c2c0b47afd6 properscoring-0.1.tar.gz |
