summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-15 06:40:08 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-15 06:40:08 +0000
commitca3593f238c9554f6d503c9fb24b2155729f0209 (patch)
tree9d0b94bd9ae21157ebd0e62b900bfef2a57629b0
parent3836f191fa7b8334c7049f24fdb863ce33503a38 (diff)
automatic import of python-properscoring
-rw-r--r--.gitignore1
-rw-r--r--python-properscoring.spec99
-rw-r--r--sources1
3 files changed, 101 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..945b4c7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/properscoring-0.1.tar.gz
diff --git a/python-properscoring.spec b/python-properscoring.spec
new file mode 100644
index 0000000..aa2bfb0
--- /dev/null
+++ b/python-properscoring.spec
@@ -0,0 +1,99 @@
+%global _empty_manifest_terminate_build 0
+Name: python-properscoring
+Version: 0.1
+Release: 1
+Summary: Proper scoring rules in Python
+License: Apache
+URL: https://github.com/TheClimateCorporation/properscoring
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/38/ac/513d2c8653ab6bc66c4502372e6e4e20ce6a136cde4c1ba9908ec36e34c1/properscoring-0.1.tar.gz
+BuildArch: noarch
+
+
+%description
+`Proper scoring rules`_ for evaluating probabilistic forecasts in Python.
+Evaluation methods that are "strictly proper" cannot be artificially improved
+through hedging, which makes them fair methods for accessing the accuracy of
+probabilistic forecasts. In particular, these rules are often used for
+evaluating weather forecasts.
+properscoring runs on both Python 2 and 3. It requires NumPy (1.8 or
+later) and SciPy (any recent version should be fine). Numba is optional,
+but highly encouraged: it enables significant speedups (e.g., 20x faster)
+for ``crps_ensemble`` and ``threshold_brier_score``.
+To install, use pip: ``pip install properscoring``.
+
+%package -n python3-properscoring
+Summary: Proper scoring rules in Python
+Provides: python-properscoring
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-properscoring
+`Proper scoring rules`_ for evaluating probabilistic forecasts in Python.
+Evaluation methods that are "strictly proper" cannot be artificially improved
+through hedging, which makes them fair methods for accessing the accuracy of
+probabilistic forecasts. In particular, these rules are often used for
+evaluating weather forecasts.
+properscoring runs on both Python 2 and 3. It requires NumPy (1.8 or
+later) and SciPy (any recent version should be fine). Numba is optional,
+but highly encouraged: it enables significant speedups (e.g., 20x faster)
+for ``crps_ensemble`` and ``threshold_brier_score``.
+To install, use pip: ``pip install properscoring``.
+
+%package help
+Summary: Development documents and examples for properscoring
+Provides: python3-properscoring-doc
+%description help
+`Proper scoring rules`_ for evaluating probabilistic forecasts in Python.
+Evaluation methods that are "strictly proper" cannot be artificially improved
+through hedging, which makes them fair methods for accessing the accuracy of
+probabilistic forecasts. In particular, these rules are often used for
+evaluating weather forecasts.
+properscoring runs on both Python 2 and 3. It requires NumPy (1.8 or
+later) and SciPy (any recent version should be fine). Numba is optional,
+but highly encouraged: it enables significant speedups (e.g., 20x faster)
+for ``crps_ensemble`` and ``threshold_brier_score``.
+To install, use pip: ``pip install properscoring``.
+
+%prep
+%autosetup -n properscoring-0.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-properscoring -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..3da4423
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f1fe6cc96c24713a28886c2c0b47afd6 properscoring-0.1.tar.gz