1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
%global _empty_manifest_terminate_build 0
Name: python-ptwt
Version: 0.1.5
Release: 1
Summary: Differentiable and gpu enabled fast wavelet transforms in PyTorch
License: EUPL-1.2
URL: https://github.com/v0lta/PyTorch-Wavelet-Toolbox
Source0: https://mirrors.aliyun.com/pypi/web/packages/24/d6/bfe000cf7ae3b8ae25b7a21d783bc86517674e943134d67b8a4f493d7489/ptwt-0.1.5.tar.gz
BuildArch: noarch
Requires: python3-PyWavelets
Requires: python3-torch
Requires: python3-scipy
Requires: python3-pooch
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-pytest
Requires: python3-nox
%description
********************************
Pytorch Wavelet Toolbox (`ptwt`)
********************************
.. image:: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/actions/workflows/tests.yml/badge.svg
:target: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/actions/workflows/tests.yml
:alt: GitHub Actions
.. image:: https://readthedocs.org/projects/pytorch-wavelet-toolbox/badge/?version=latest
:target: https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/pyversions/ptwt
:target: https://pypi.org/project/ptwt/
:alt: PyPI Versions
.. image:: https://img.shields.io/pypi/v/ptwt
:target: https://pypi.org/project/ptwt/
:alt: PyPI - Project
.. image:: https://img.shields.io/pypi/l/ptwt
:target: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/blob/main/LICENSE
:alt: PyPI - License
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Black code style
.. image:: https://static.pepy.tech/personalized-badge/ptwt?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads
:target: https://pepy.tech/project/ptwt
Welcome to the PyTorch wavelet toolbox. This package implements:
- the fast wavelet transform (fwt) via ``wavedec`` and its inverse by providing the ``waverec`` function,
- the two-dimensional fwt is called ``wavedec2`` the synthesis counterpart ``waverec2``,
- ``wavedec3`` and ``waverec3`` cover the three-dimensional analysis and synthesis case,
- ``fswavedec2``, ``fswavedec3``, ``fswaverec2`` and ``fswaverec3`` support separable transformations.
- ``MatrixWavedec`` and ``MatrixWaverec`` implement sparse-matrix-based fast wavelet transforms with boundary filters,
- 2d sparse-matrix transforms with separable & non-separable boundary filters are available,
- ``MatrixWavedec3`` and ``MatrixWaverec3`` allow separable 3D-fwt's with boundary filters.
- ``cwt`` computes a one-dimensional continuous forward transform,
- single and two-dimensional wavelet packet forward and backward transforms are available via the ``WaveletPacket`` and ``WaveletPacket2D`` objects,
- finally, this package provides adaptive wavelet support (experimental).
This toolbox extends `PyWavelets <https://pywavelets.readthedocs.io/en/latest/>`_ . We additionally provide GPU and gradient support via a PyTorch backend.
Complete documentation is available at: https://pytorch-wavelet-toolbox.readthedocs.io/
**Installation**
Install the toolbox via pip or clone this repository. In order to use ``pip``, type:
.. code-block:: sh
$ pip install ptwt
You can remove it later by typing ``pip uninstall ptwt``.
Example usage:
""""""""""""""
**Single dimensional transform**
One way to compute fast wavelet transforms is to rely on padding and
convolution. Consider the following example:
.. code-block:: python
import torch
import numpy as np
import pywt
import ptwt # use "from src import ptwt" for a cloned the repo
# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
wavelet = pywt.Wavelet('haar')
# compare the forward fwt coefficients
print(pywt.wavedec(data, wavelet, mode='zero', level=2))
print(ptwt.wavedec(data_torch, wavelet, mode='zero', level=2))
# invert the fwt.
print(ptwt.waverec(ptwt.wavedec(data_torch, wavelet, mode='zero'),
wavelet))
The functions ``wavedec`` and ``waverec`` compute the 1d-fwt and its inverse.
Internally both rely on ``conv1d``, and its transposed counterpart ``conv_transpose1d``
from the ``torch.nn.functional`` module. This toolbox supports discrete wavelets
see also ``pywt.wavelist(kind='discrete')``. I have tested
Daubechies-Wavelets ``db-x`` and symlets ``sym-x``, which are usually a good starting point.
**Two-dimensional transform**
Analog to the 1d-case ``wavedec2`` and ``waverec2`` rely on
``conv2d``, and its transposed counterpart ``conv_transpose2d``.
To test an example run:
.. code-block:: python
import ptwt, pywt, torch
import numpy as np
import scipy.misc
face = np.transpose(scipy.datasets.face(),
[2, 0, 1]).astype(np.float64)
pytorch_face = torch.tensor(face)
coefficients = ptwt.wavedec2(pytorch_face, pywt.Wavelet("haar"),
level=2, mode="constant")
reconstruction = ptwt.waverec2(coefficients, pywt.Wavelet("haar"))
np.max(np.abs(face - reconstruction.squeeze(1).numpy()))
**Boundary Wavelets with Sparse-Matrices**
In addition to convolution and padding approaches,
sparse-matrix-based code with boundary wavelet support is available.
In contrast to padding, boundary wavelets do not add extra pixels at
the edges.
Internally, boundary wavelet support relies on ``torch.sparse.mm``.
Generate 1d sparse matrix forward and backward transforms with the
``MatrixWavedec`` and ``MatrixWaverec`` classes.
Reconsidering the 1d case, try:
.. code-block:: python
import torch
import numpy as np
import pywt
import ptwt # use "from src import ptwt" for a cloned the repo
# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
# forward
matrix_wavedec = ptwt.MatrixWavedec(pywt.Wavelet("haar"), level=2)
coeff = matrix_wavedec(data_torch)
print(coeff)
# backward
matrix_waverec = ptwt.MatrixWaverec(pywt.Wavelet("haar"))
rec = matrix_waverec(coeff)
print(rec)
The process for the 2d transforms ``MatrixWavedec2``, ``MatrixWaverec2`` works similarly.
By default, a separable transformation is used.
To use a non-separable transformation, pass ``separable=False`` to ``MatrixWavedec2`` and ``MatrixWaverec2``.
Separable transformations use a 1d transformation along both axes, which might be faster since fewer matrix entries
have to be orthogonalized.
**Adaptive** **Wavelets**
Experimental code to train an adaptive wavelet layer in PyTorch is available in the ``examples`` folder. In addition to static wavelets
from pywt,
- Adaptive product-filters
- and optimizable orthogonal-wavelets are supported.
See https://github.com/v0lta/PyTorch-Wavelet-Toolbox/tree/main/examples/network_compression/ for a complete implementation.
**Testing**
The ``tests`` folder contains multiple tests to allow independent verification of this toolbox.
The GitHub workflow executes a subset of all tests for efficiency reasons.
After cloning the repository, moving into the main directory, and installing ``nox`` with ``pip install nox`` run
.. code-block:: sh
$ nox --session test
to run all existing tests.
Citation
""""""""
If you use this work in a scientific context please cite:
.. code-block::
@phdthesis{handle:20.500.11811/9245,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5-63361,
author = {{Moritz Wolter}},
title = {Frequency Domain Methods in Recurrent Neural Networks for Sequential Data Processing},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2021,
month = jul,
url = {https://hdl.handle.net/20.500.11811/9245}
}
If you use the boundary wavelet support please additionally cite:
.. code-block::
@thesis{Blanke2021,
author = {Felix Blanke},
title = {{Randbehandlung bei Wavelets für Faltungsnetzwerke}},
type = {Bachelor's Thesis},
annote = {Gbachelor},
year = {2021},
school = {Institut f\"ur Numerische Simulation, Universit\"at Bonn}
}
%package -n python3-ptwt
Summary: Differentiable and gpu enabled fast wavelet transforms in PyTorch
Provides: python-ptwt
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ptwt
********************************
Pytorch Wavelet Toolbox (`ptwt`)
********************************
.. image:: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/actions/workflows/tests.yml/badge.svg
:target: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/actions/workflows/tests.yml
:alt: GitHub Actions
.. image:: https://readthedocs.org/projects/pytorch-wavelet-toolbox/badge/?version=latest
:target: https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/pyversions/ptwt
:target: https://pypi.org/project/ptwt/
:alt: PyPI Versions
.. image:: https://img.shields.io/pypi/v/ptwt
:target: https://pypi.org/project/ptwt/
:alt: PyPI - Project
.. image:: https://img.shields.io/pypi/l/ptwt
:target: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/blob/main/LICENSE
:alt: PyPI - License
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Black code style
.. image:: https://static.pepy.tech/personalized-badge/ptwt?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads
:target: https://pepy.tech/project/ptwt
Welcome to the PyTorch wavelet toolbox. This package implements:
- the fast wavelet transform (fwt) via ``wavedec`` and its inverse by providing the ``waverec`` function,
- the two-dimensional fwt is called ``wavedec2`` the synthesis counterpart ``waverec2``,
- ``wavedec3`` and ``waverec3`` cover the three-dimensional analysis and synthesis case,
- ``fswavedec2``, ``fswavedec3``, ``fswaverec2`` and ``fswaverec3`` support separable transformations.
- ``MatrixWavedec`` and ``MatrixWaverec`` implement sparse-matrix-based fast wavelet transforms with boundary filters,
- 2d sparse-matrix transforms with separable & non-separable boundary filters are available,
- ``MatrixWavedec3`` and ``MatrixWaverec3`` allow separable 3D-fwt's with boundary filters.
- ``cwt`` computes a one-dimensional continuous forward transform,
- single and two-dimensional wavelet packet forward and backward transforms are available via the ``WaveletPacket`` and ``WaveletPacket2D`` objects,
- finally, this package provides adaptive wavelet support (experimental).
This toolbox extends `PyWavelets <https://pywavelets.readthedocs.io/en/latest/>`_ . We additionally provide GPU and gradient support via a PyTorch backend.
Complete documentation is available at: https://pytorch-wavelet-toolbox.readthedocs.io/
**Installation**
Install the toolbox via pip or clone this repository. In order to use ``pip``, type:
.. code-block:: sh
$ pip install ptwt
You can remove it later by typing ``pip uninstall ptwt``.
Example usage:
""""""""""""""
**Single dimensional transform**
One way to compute fast wavelet transforms is to rely on padding and
convolution. Consider the following example:
.. code-block:: python
import torch
import numpy as np
import pywt
import ptwt # use "from src import ptwt" for a cloned the repo
# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
wavelet = pywt.Wavelet('haar')
# compare the forward fwt coefficients
print(pywt.wavedec(data, wavelet, mode='zero', level=2))
print(ptwt.wavedec(data_torch, wavelet, mode='zero', level=2))
# invert the fwt.
print(ptwt.waverec(ptwt.wavedec(data_torch, wavelet, mode='zero'),
wavelet))
The functions ``wavedec`` and ``waverec`` compute the 1d-fwt and its inverse.
Internally both rely on ``conv1d``, and its transposed counterpart ``conv_transpose1d``
from the ``torch.nn.functional`` module. This toolbox supports discrete wavelets
see also ``pywt.wavelist(kind='discrete')``. I have tested
Daubechies-Wavelets ``db-x`` and symlets ``sym-x``, which are usually a good starting point.
**Two-dimensional transform**
Analog to the 1d-case ``wavedec2`` and ``waverec2`` rely on
``conv2d``, and its transposed counterpart ``conv_transpose2d``.
To test an example run:
.. code-block:: python
import ptwt, pywt, torch
import numpy as np
import scipy.misc
face = np.transpose(scipy.datasets.face(),
[2, 0, 1]).astype(np.float64)
pytorch_face = torch.tensor(face)
coefficients = ptwt.wavedec2(pytorch_face, pywt.Wavelet("haar"),
level=2, mode="constant")
reconstruction = ptwt.waverec2(coefficients, pywt.Wavelet("haar"))
np.max(np.abs(face - reconstruction.squeeze(1).numpy()))
**Boundary Wavelets with Sparse-Matrices**
In addition to convolution and padding approaches,
sparse-matrix-based code with boundary wavelet support is available.
In contrast to padding, boundary wavelets do not add extra pixels at
the edges.
Internally, boundary wavelet support relies on ``torch.sparse.mm``.
Generate 1d sparse matrix forward and backward transforms with the
``MatrixWavedec`` and ``MatrixWaverec`` classes.
Reconsidering the 1d case, try:
.. code-block:: python
import torch
import numpy as np
import pywt
import ptwt # use "from src import ptwt" for a cloned the repo
# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
# forward
matrix_wavedec = ptwt.MatrixWavedec(pywt.Wavelet("haar"), level=2)
coeff = matrix_wavedec(data_torch)
print(coeff)
# backward
matrix_waverec = ptwt.MatrixWaverec(pywt.Wavelet("haar"))
rec = matrix_waverec(coeff)
print(rec)
The process for the 2d transforms ``MatrixWavedec2``, ``MatrixWaverec2`` works similarly.
By default, a separable transformation is used.
To use a non-separable transformation, pass ``separable=False`` to ``MatrixWavedec2`` and ``MatrixWaverec2``.
Separable transformations use a 1d transformation along both axes, which might be faster since fewer matrix entries
have to be orthogonalized.
**Adaptive** **Wavelets**
Experimental code to train an adaptive wavelet layer in PyTorch is available in the ``examples`` folder. In addition to static wavelets
from pywt,
- Adaptive product-filters
- and optimizable orthogonal-wavelets are supported.
See https://github.com/v0lta/PyTorch-Wavelet-Toolbox/tree/main/examples/network_compression/ for a complete implementation.
**Testing**
The ``tests`` folder contains multiple tests to allow independent verification of this toolbox.
The GitHub workflow executes a subset of all tests for efficiency reasons.
After cloning the repository, moving into the main directory, and installing ``nox`` with ``pip install nox`` run
.. code-block:: sh
$ nox --session test
to run all existing tests.
Citation
""""""""
If you use this work in a scientific context please cite:
.. code-block::
@phdthesis{handle:20.500.11811/9245,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5-63361,
author = {{Moritz Wolter}},
title = {Frequency Domain Methods in Recurrent Neural Networks for Sequential Data Processing},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2021,
month = jul,
url = {https://hdl.handle.net/20.500.11811/9245}
}
If you use the boundary wavelet support please additionally cite:
.. code-block::
@thesis{Blanke2021,
author = {Felix Blanke},
title = {{Randbehandlung bei Wavelets für Faltungsnetzwerke}},
type = {Bachelor's Thesis},
annote = {Gbachelor},
year = {2021},
school = {Institut f\"ur Numerische Simulation, Universit\"at Bonn}
}
%package help
Summary: Development documents and examples for ptwt
Provides: python3-ptwt-doc
%description help
********************************
Pytorch Wavelet Toolbox (`ptwt`)
********************************
.. image:: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/actions/workflows/tests.yml/badge.svg
:target: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/actions/workflows/tests.yml
:alt: GitHub Actions
.. image:: https://readthedocs.org/projects/pytorch-wavelet-toolbox/badge/?version=latest
:target: https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/pyversions/ptwt
:target: https://pypi.org/project/ptwt/
:alt: PyPI Versions
.. image:: https://img.shields.io/pypi/v/ptwt
:target: https://pypi.org/project/ptwt/
:alt: PyPI - Project
.. image:: https://img.shields.io/pypi/l/ptwt
:target: https://github.com/v0lta/PyTorch-Wavelet-Toolbox/blob/main/LICENSE
:alt: PyPI - License
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Black code style
.. image:: https://static.pepy.tech/personalized-badge/ptwt?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads
:target: https://pepy.tech/project/ptwt
Welcome to the PyTorch wavelet toolbox. This package implements:
- the fast wavelet transform (fwt) via ``wavedec`` and its inverse by providing the ``waverec`` function,
- the two-dimensional fwt is called ``wavedec2`` the synthesis counterpart ``waverec2``,
- ``wavedec3`` and ``waverec3`` cover the three-dimensional analysis and synthesis case,
- ``fswavedec2``, ``fswavedec3``, ``fswaverec2`` and ``fswaverec3`` support separable transformations.
- ``MatrixWavedec`` and ``MatrixWaverec`` implement sparse-matrix-based fast wavelet transforms with boundary filters,
- 2d sparse-matrix transforms with separable & non-separable boundary filters are available,
- ``MatrixWavedec3`` and ``MatrixWaverec3`` allow separable 3D-fwt's with boundary filters.
- ``cwt`` computes a one-dimensional continuous forward transform,
- single and two-dimensional wavelet packet forward and backward transforms are available via the ``WaveletPacket`` and ``WaveletPacket2D`` objects,
- finally, this package provides adaptive wavelet support (experimental).
This toolbox extends `PyWavelets <https://pywavelets.readthedocs.io/en/latest/>`_ . We additionally provide GPU and gradient support via a PyTorch backend.
Complete documentation is available at: https://pytorch-wavelet-toolbox.readthedocs.io/
**Installation**
Install the toolbox via pip or clone this repository. In order to use ``pip``, type:
.. code-block:: sh
$ pip install ptwt
You can remove it later by typing ``pip uninstall ptwt``.
Example usage:
""""""""""""""
**Single dimensional transform**
One way to compute fast wavelet transforms is to rely on padding and
convolution. Consider the following example:
.. code-block:: python
import torch
import numpy as np
import pywt
import ptwt # use "from src import ptwt" for a cloned the repo
# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
wavelet = pywt.Wavelet('haar')
# compare the forward fwt coefficients
print(pywt.wavedec(data, wavelet, mode='zero', level=2))
print(ptwt.wavedec(data_torch, wavelet, mode='zero', level=2))
# invert the fwt.
print(ptwt.waverec(ptwt.wavedec(data_torch, wavelet, mode='zero'),
wavelet))
The functions ``wavedec`` and ``waverec`` compute the 1d-fwt and its inverse.
Internally both rely on ``conv1d``, and its transposed counterpart ``conv_transpose1d``
from the ``torch.nn.functional`` module. This toolbox supports discrete wavelets
see also ``pywt.wavelist(kind='discrete')``. I have tested
Daubechies-Wavelets ``db-x`` and symlets ``sym-x``, which are usually a good starting point.
**Two-dimensional transform**
Analog to the 1d-case ``wavedec2`` and ``waverec2`` rely on
``conv2d``, and its transposed counterpart ``conv_transpose2d``.
To test an example run:
.. code-block:: python
import ptwt, pywt, torch
import numpy as np
import scipy.misc
face = np.transpose(scipy.datasets.face(),
[2, 0, 1]).astype(np.float64)
pytorch_face = torch.tensor(face)
coefficients = ptwt.wavedec2(pytorch_face, pywt.Wavelet("haar"),
level=2, mode="constant")
reconstruction = ptwt.waverec2(coefficients, pywt.Wavelet("haar"))
np.max(np.abs(face - reconstruction.squeeze(1).numpy()))
**Boundary Wavelets with Sparse-Matrices**
In addition to convolution and padding approaches,
sparse-matrix-based code with boundary wavelet support is available.
In contrast to padding, boundary wavelets do not add extra pixels at
the edges.
Internally, boundary wavelet support relies on ``torch.sparse.mm``.
Generate 1d sparse matrix forward and backward transforms with the
``MatrixWavedec`` and ``MatrixWaverec`` classes.
Reconsidering the 1d case, try:
.. code-block:: python
import torch
import numpy as np
import pywt
import ptwt # use "from src import ptwt" for a cloned the repo
# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
# forward
matrix_wavedec = ptwt.MatrixWavedec(pywt.Wavelet("haar"), level=2)
coeff = matrix_wavedec(data_torch)
print(coeff)
# backward
matrix_waverec = ptwt.MatrixWaverec(pywt.Wavelet("haar"))
rec = matrix_waverec(coeff)
print(rec)
The process for the 2d transforms ``MatrixWavedec2``, ``MatrixWaverec2`` works similarly.
By default, a separable transformation is used.
To use a non-separable transformation, pass ``separable=False`` to ``MatrixWavedec2`` and ``MatrixWaverec2``.
Separable transformations use a 1d transformation along both axes, which might be faster since fewer matrix entries
have to be orthogonalized.
**Adaptive** **Wavelets**
Experimental code to train an adaptive wavelet layer in PyTorch is available in the ``examples`` folder. In addition to static wavelets
from pywt,
- Adaptive product-filters
- and optimizable orthogonal-wavelets are supported.
See https://github.com/v0lta/PyTorch-Wavelet-Toolbox/tree/main/examples/network_compression/ for a complete implementation.
**Testing**
The ``tests`` folder contains multiple tests to allow independent verification of this toolbox.
The GitHub workflow executes a subset of all tests for efficiency reasons.
After cloning the repository, moving into the main directory, and installing ``nox`` with ``pip install nox`` run
.. code-block:: sh
$ nox --session test
to run all existing tests.
Citation
""""""""
If you use this work in a scientific context please cite:
.. code-block::
@phdthesis{handle:20.500.11811/9245,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5-63361,
author = {{Moritz Wolter}},
title = {Frequency Domain Methods in Recurrent Neural Networks for Sequential Data Processing},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2021,
month = jul,
url = {https://hdl.handle.net/20.500.11811/9245}
}
If you use the boundary wavelet support please additionally cite:
.. code-block::
@thesis{Blanke2021,
author = {Felix Blanke},
title = {{Randbehandlung bei Wavelets für Faltungsnetzwerke}},
type = {Bachelor's Thesis},
annote = {Gbachelor},
year = {2021},
school = {Institut f\"ur Numerische Simulation, Universit\"at Bonn}
}
%prep
%autosetup -n ptwt-0.1.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ptwt -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1
- Package Spec generated
|