%global _empty_manifest_terminate_build 0 Name: python-pyclustertend Version: 1.8.2 Release: 1 Summary: A package to assess cluster tendency for unsupervised learning License: BSD-3-Clause URL: https://github.com/lachhebo/pyclustertend Source0: https://mirrors.nju.edu.cn/pypi/web/packages/04/a5/0d0043f93d9d499c720866e9eba068da9d76ca9d519a22fd008913abf74e/pyclustertend-1.8.2.tar.gz BuildArch: noarch Requires: python3-scikit-learn Requires: python3-matplotlib Requires: python3-numpy Requires: python3-pandas Requires: python3-numba %description # pyclustertend [![Build Status](https://travis-ci.com/lachhebo/pyclustertend.svg?branch=master)](https://travis-ci.com/lachhebo/pyclustertend) [![PyPi Status](https://img.shields.io/pypi/v/pyclustertend.svg?color=brightgreen)](https://pypi.org/project/pyclustertend/) [![Documentation Status](https://readthedocs.org/projects/pyclustertend/badge/?version=master)](https://pyclustertend.readthedocs.io/en/master/) [![Downloads](https://pepy.tech/badge/pyclustertend)](https://pepy.tech/project/pyclustertend) [![codecov](https://codecov.io/gh/lachhebo/pyclustertend/branch/master/graph/badge.svg)](https://codecov.io/gh/lachhebo/pyclustertend) [![DOI](https://zenodo.org/badge/187477036.svg)](https://zenodo.org/badge/latestdoi/187477036) pyclustertend is a python package specialized in cluster tendency. Cluster tendency consist to assess if clustering algorithms are relevant for a dataset. Three methods for assessing cluster tendency are currently implemented and one additional method based on metrics obtained with a KMeans estimator : - [x] Hopkins Statistics - [x] VAT - [x] iVAT - [x] Metric based method (silhouette, calinksi, davies bouldin) ## Installation ```shell pip install pyclustertend ``` ## Usage ### Example Hopkins ```python >>>from sklearn import datasets >>>from pyclustertend import hopkins >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>hopkins(X,150) 0.18950453452838564 ``` ### Example VAT ```python >>>from sklearn import datasets >>>from pyclustertend import vat >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>vat(X) ``` ### Example iVat ```python >>>from sklearn import datasets >>>from pyclustertend import ivat >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>ivat(X) ``` ## Notes It's preferable to scale the data before using hopkins or vat algorithm as they use distance between observations. Moreover, vat and ivat algorithms do not really fit to massive databases. A first solution is to sample the data before using those algorithms. %package -n python3-pyclustertend Summary: A package to assess cluster tendency for unsupervised learning Provides: python-pyclustertend BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pyclustertend # pyclustertend [![Build Status](https://travis-ci.com/lachhebo/pyclustertend.svg?branch=master)](https://travis-ci.com/lachhebo/pyclustertend) [![PyPi Status](https://img.shields.io/pypi/v/pyclustertend.svg?color=brightgreen)](https://pypi.org/project/pyclustertend/) [![Documentation Status](https://readthedocs.org/projects/pyclustertend/badge/?version=master)](https://pyclustertend.readthedocs.io/en/master/) [![Downloads](https://pepy.tech/badge/pyclustertend)](https://pepy.tech/project/pyclustertend) [![codecov](https://codecov.io/gh/lachhebo/pyclustertend/branch/master/graph/badge.svg)](https://codecov.io/gh/lachhebo/pyclustertend) [![DOI](https://zenodo.org/badge/187477036.svg)](https://zenodo.org/badge/latestdoi/187477036) pyclustertend is a python package specialized in cluster tendency. Cluster tendency consist to assess if clustering algorithms are relevant for a dataset. Three methods for assessing cluster tendency are currently implemented and one additional method based on metrics obtained with a KMeans estimator : - [x] Hopkins Statistics - [x] VAT - [x] iVAT - [x] Metric based method (silhouette, calinksi, davies bouldin) ## Installation ```shell pip install pyclustertend ``` ## Usage ### Example Hopkins ```python >>>from sklearn import datasets >>>from pyclustertend import hopkins >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>hopkins(X,150) 0.18950453452838564 ``` ### Example VAT ```python >>>from sklearn import datasets >>>from pyclustertend import vat >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>vat(X) ``` ### Example iVat ```python >>>from sklearn import datasets >>>from pyclustertend import ivat >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>ivat(X) ``` ## Notes It's preferable to scale the data before using hopkins or vat algorithm as they use distance between observations. Moreover, vat and ivat algorithms do not really fit to massive databases. A first solution is to sample the data before using those algorithms. %package help Summary: Development documents and examples for pyclustertend Provides: python3-pyclustertend-doc %description help # pyclustertend [![Build Status](https://travis-ci.com/lachhebo/pyclustertend.svg?branch=master)](https://travis-ci.com/lachhebo/pyclustertend) [![PyPi Status](https://img.shields.io/pypi/v/pyclustertend.svg?color=brightgreen)](https://pypi.org/project/pyclustertend/) [![Documentation Status](https://readthedocs.org/projects/pyclustertend/badge/?version=master)](https://pyclustertend.readthedocs.io/en/master/) [![Downloads](https://pepy.tech/badge/pyclustertend)](https://pepy.tech/project/pyclustertend) [![codecov](https://codecov.io/gh/lachhebo/pyclustertend/branch/master/graph/badge.svg)](https://codecov.io/gh/lachhebo/pyclustertend) [![DOI](https://zenodo.org/badge/187477036.svg)](https://zenodo.org/badge/latestdoi/187477036) pyclustertend is a python package specialized in cluster tendency. Cluster tendency consist to assess if clustering algorithms are relevant for a dataset. Three methods for assessing cluster tendency are currently implemented and one additional method based on metrics obtained with a KMeans estimator : - [x] Hopkins Statistics - [x] VAT - [x] iVAT - [x] Metric based method (silhouette, calinksi, davies bouldin) ## Installation ```shell pip install pyclustertend ``` ## Usage ### Example Hopkins ```python >>>from sklearn import datasets >>>from pyclustertend import hopkins >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>hopkins(X,150) 0.18950453452838564 ``` ### Example VAT ```python >>>from sklearn import datasets >>>from pyclustertend import vat >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>vat(X) ``` ### Example iVat ```python >>>from sklearn import datasets >>>from pyclustertend import ivat >>>from sklearn.preprocessing import scale >>>X = scale(datasets.load_iris().data) >>>ivat(X) ``` ## Notes It's preferable to scale the data before using hopkins or vat algorithm as they use distance between observations. Moreover, vat and ivat algorithms do not really fit to massive databases. A first solution is to sample the data before using those algorithms. %prep %autosetup -n pyclustertend-1.8.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pyclustertend -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.8.2-1 - Package Spec generated