summaryrefslogtreecommitdiff
path: root/python-pydynamic.spec
blob: 5a115e4ed4fd88be507c383ce7f2a8cba5578e27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
%global _empty_manifest_terminate_build 0
Name:		python-PyDynamic
Version:	2.4.0
Release:	1
Summary:	A software package for the analysis of dynamic measurements
License:	GNU Lesser General Public License v3 or later (LGPLv3+)
URL:		https://ptb-m4d.github.io/PyDynamic/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/cf/71/7e6aa3ccafff569b1631bf86ff902b26473e99d96247c5cb9281905ed264/PyDynamic-2.4.0.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-scipy
Requires:	python3-sympy
Requires:	python3-PyWavelets
Requires:	python3-time-series-buffer
Requires:	python3-notebook

%description
<img src="https://raw.githubusercontent.com/PTB-M4D/PyDynamic/main/docs/PyDynamic_logo.svg" alt="the logo of PyDynamic" title="PyDynamic logo">
<p align="center">
  <!-- CircleCI Tests -->
  <a href="https://circleci.com/gh/PTB-M4D/PyDynamic"><img alt="CircleCI pipeline status badge" src="https://circleci.com/gh/PTB-M4D/PyDynamic.svg?style=shield"></a>
  <!-- ReadTheDocs Documentation -->
  <a href="https://pydynamic.readthedocs.io/en/latest/index.html">
    <img src="https://readthedocs.org/projects/pydynamic/badge/?version=latest" alt="PyDynamic's ReadTheDocs status">
  </a>
  <!-- CodeCov(erage) -->
  <a href="https://codecov.io/gh/PTB-M4D/PyDynamic">
    <img src="https://codecov.io/gh/PTB-M4D/PyDynamic/branch/main/graph/badge.svg" alt=" PyDynamic's CodeCov badge">
  </a>
  <!-- Codacy -->
  <a href="https://www.codacy.com/gh/PTB-M4D/PyDynamic/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=PTB-M4D/PyDynamic&amp;utm_campaign=Badge_Grade">
    <img src="https://app.codacy.com/project/badge/Grade/db86b58d6fa5446e8408644c8196f5e2" alt=" PyDynamic's Codacy badge">
  </a>
  <!-- PyPI Version -->
  <a href="https://pypi.org/project/pydynamic">
    <img src="https://img.shields.io/pypi/v/pydynamic.svg?label=release&color=blue&style=flat-square" alt=" PyDynamic's PyPI version number">
  </a>
  <!-- PyPI License -->
  <a href="https://www.gnu.org/licenses/lgpl-3.0.en.html">
    <img alt="PyPI - license badge" src="https://img.shields.io/pypi/l/pydynamic?color=bright">
  </a>
  <!-- Zenodo DOI -->
  <a href="https://doi.org/10.5281/zenodo.1489877">
    <img src="https://zenodo.org/badge/DOI/10.5281/zenodo.1489877.svg" alt="DOI"></a>
</p>

# Python library for the analysis of dynamic measurements

<p align="justify">
The goal of this library is to provide a starting point for users in metrology and
related areas who deal with time-dependent i.e., <i>dynamic</i>, measurements. The
initial version of this software was developed as part of a joint research project of
the national metrology institutes from Germany and the UK, i.e.
<a href="https://www.ptb.de/cms/en.html">Physikalisch-Technische Bundesanstalt</a> 
and the <a href="https://www.npl.co.uk">National Physical Laboratory</a>.
</p>

<p align="justify">
Further development and explicit use of PyDynamic was part of the European research
project <a href="https://www.ptb.de/empir2018/met4fof/home/">EMPIR 17IND12 
Met4FoF</a> and the German research project <a href="https://famous-project.
eu">FAMOUS</a>. Since the end of these two projects, development of PyDynamic continues mostly based on feature requests and smaller collaborations.
</p>

## Table of content

- [Quickstart](#quickstart)
- [Features](#features)
- [Module diagram](#module-diagram)
- [Documentation](#documentation)
- [Installation](#installation)
- [Contributing](#contributing)
- [Examples](#examples)
- [Roadmap](#roadmap)
- [Citation](#citation)
- [Acknowledgement](#acknowledgement)
- [Disclaimer](#disclaimer)
- [License](#license)

## Quickstart

To dive right into it, install PyDynamic and execute one of the examples:

```shell
(my_PyDynamice_venv) $ pip install PyDynamic
Collecting PyDynamic
[...]
Successfully installed PyDynamic-[...]
(my_PyDynamice_venv) $ python
Python 3.9.7 (default, Aug 31 2021, 13:28:12) 
[GCC 11.1.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
```
```python
>>> from PyDynamic.examples.uncertainty_for_dft.deconv_DFT import DftDeconvolutionExample
>>> DftDeconvolutionExample()
Propagating uncertainty associated with measurement through DFT
Propagating uncertainty associated with calibration data to real and imag part
Propagating uncertainty through the inverse system
Propagating uncertainty through the low-pass filter
Propagating uncertainty associated with the estimate back to time domain
```

You will see a couple of plots opening up to observe the results. For 
further information just read on and visit our 
[tutorial section](#examples). 

## Features

PyDynamic offers propagation of *uncertainties* for

- application of the discrete Fourier transform and its inverse
- filtering with an FIR or IIR filter with uncertain coefficients
- design of a FIR filter as the inverse of a frequency response with
  uncertain coefficients
- design on an IIR filter as the inverse of a frequency response with
  uncertain coefficients
- deconvolution in the frequency domain by division
- multiplication in the frequency domain
- transformation from amplitude and phase to a representation by real and
  imaginary parts
- 1-dimensional interpolation

For the validation of the propagation of uncertainties, the Monte-Carlo
method can be applied using a memory-efficient implementation of Monte-Carlo
for digital filtering.

## Module diagram

The fundamental structure of PyDynamic is shown in the following figure.

![PyDynamic module diagram](https://raw.githubusercontent.com/PTB-M4D/PyDynamic/main/docs/PyDynamic_module_diagram.png)

However, imports should generally be possible without explicitly naming all packages
and modules in the path, so that for example the following import statements are all
equivalent.

```python
from PyDynamic.uncertainty.propagate_filter import FIRuncFilter
from PyDynamic.uncertainty import FIRuncFilter
from PyDynamic import FIRuncFilter
```

## Documentation

The documentation for PyDynamic can be found on
[ReadTheDocs](http://pydynamic.readthedocs.io)

## Installation

The installation of PyDynamic is as straightforward as the Python ecosystem suggests.
Detailed instructions on different options to install PyDynamic you can find in the 
[installation section of the docs](https://pydynamic.readthedocs.io/en/latest/INSTALL.html).

## Contributing

Whenever you are involved with PyDynamic, please respect our [Code of Conduct
](https://github.com/PTB-M4D/PyDynamic/blob/main/CODE_OF_CONDUCT.md).
If you want to contribute back to the project, after reading our Code of Conduct,
take a look at our open developments in the [project board
](https://github.com/PTB-M4D/PyDynamic/projects/1), [pull requests
](https://github.com/PTB-M4D/PyDynamic/pulls) and search [the issues
](https://github.com/PTB-M4D/PyDynamic/issues). If you find something similar to
your ideas or troubles, let us know by leaving a comment or remark. If you have
something new to tell us, feel free to open a feature request or bug report in the
issues. If you want to contribute code or improve our documentation, please check our
[contribution advices and tips](https://pydynamic.readthedocs.io/en/latest/CONTRIBUTING.html).

If you have downloaded this software, we would be very thankful for letting
us know. You may, for instance, drop an email to one of the [authors
](https://github.com/PTB-M4D/PyDynamic/graphs/contributors) (e.g.
[Sascha Eichstädt](mailto:sascha.eichstaedt@ptb.de), [Björn Ludwig
](mailto:bjoern.ludwig@ptb.de) or [Maximilian Gruber
](mailto:maximilian.gruber@ptb.de))

## Examples

We have collected extended material for an easier introduction to PyDynamic in the
package _examples_. Detailed assistance on getting started you can find in the
corresponding sections of the docs:

* [examples](https://pydynamic.readthedocs.io/en/latest/Examples.html)
* [tutorials](https://pydynamic.readthedocs.io/en/latest/Tutorials.html)

In various Jupyter Notebooks and scripts we demonstrate the use of
the provided methods to aid the first steps in PyDynamic. New features are introduced
with an example from the beginning if feasible. We are currently moving this supporting
collection to an external repository on GitHub. They will be available at
[github.com/PTB-M4D/PyDynamic_tutorials](https://github.com/PTB-M4D/PyDynamic_tutorials) 
in the near future.

## Roadmap

1. Implementation of robust measurement (sensor) models
1. Extension to more complex noise and uncertainty models
1. Introducing uncertainty propagation for Kalman filters

For a comprehensive overview of current development activities and upcoming tasks,
take a look at the [project board](https://github.com/PTB-M4D/PyDynamic/projects/1),
[issues](https://github.com/PTB-M4D/PyDynamic/issues) and
[pull requests](https://github.com/PTB-M4D/PyDynamic/pulls).

## Citation

If you publish results obtained with the help of PyDynamic, please use the above linked
[Zenodo DOI](https://doi.org/10.5281/zenodo.1489877) for the code itself or cite

Sascha Eichstädt, Clemens Elster, Ian M. Smith, and Trevor J. Esward
*Evaluation of dynamic measurement uncertainty – an open-source software
package to bridge theory and practice*
**J. Sens. Sens. Syst.**, 6, 97-105, 2017, DOI: [10.5194/jsss-6-97-2017
](https://doi.org/10.5194/jsss-6-97-2017)

## Acknowledgement

Part of this work is developed as part of the Joint Research Project [17IND12 Met4FoF
](http://met4fof.eu) of the European Metrology Programme for Innovation and
Research (EMPIR).

This work was part of the Joint Support for Impact project
[14SIP08](https://www.euramet.org/research-innovation/search-research-projects/details/project/standards-and-software-to-maximise-end-user-uptake-of-nmi-calibrations-of-dynamic-force-torque-and/)
of the European Metrology Programme for Innovation and Research (EMPIR). The
[EMPIR](http://msu.euramet.org) is jointly funded by the EMPIR participating 
countries within EURAMET and the European Union.

## Disclaimer

This software is developed at Physikalisch-Technische Bundesanstalt (PTB). The
software is made available "as is" free of cost. PTB assumes no responsibility
whatsoever for its use by other parties, and makes no guarantees, expressed or
implied, about its quality, reliability, safety, suitability or any other
characteristic. In no event will PTB be liable for any direct, indirect or
consequential damage arising in connection with the use of this software.

## License

PyDynamic is distributed under the [LGPLv3 license
](https://github.com/PTB-M4D/PyDynamic/blob/main/licence.txt)
except for the module [`impinvar.py`
](https://github.com/PTB-M4D/PyDynamic/blob/main/src/PyDynamic/misc/impinvar.py) 
in the package [`misc`
](https://pydynamic.readthedocs.io/en/main/PyDynamic.misc.html), 
which is distributed under the [GPLv3 license
](https://github.com/PTB-M4D/PyDynamic/blob/main/src/PyDynamic/misc/impinvar_license.txt).




%package -n python3-PyDynamic
Summary:	A software package for the analysis of dynamic measurements
Provides:	python-PyDynamic
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-PyDynamic
<img src="https://raw.githubusercontent.com/PTB-M4D/PyDynamic/main/docs/PyDynamic_logo.svg" alt="the logo of PyDynamic" title="PyDynamic logo">
<p align="center">
  <!-- CircleCI Tests -->
  <a href="https://circleci.com/gh/PTB-M4D/PyDynamic"><img alt="CircleCI pipeline status badge" src="https://circleci.com/gh/PTB-M4D/PyDynamic.svg?style=shield"></a>
  <!-- ReadTheDocs Documentation -->
  <a href="https://pydynamic.readthedocs.io/en/latest/index.html">
    <img src="https://readthedocs.org/projects/pydynamic/badge/?version=latest" alt="PyDynamic's ReadTheDocs status">
  </a>
  <!-- CodeCov(erage) -->
  <a href="https://codecov.io/gh/PTB-M4D/PyDynamic">
    <img src="https://codecov.io/gh/PTB-M4D/PyDynamic/branch/main/graph/badge.svg" alt=" PyDynamic's CodeCov badge">
  </a>
  <!-- Codacy -->
  <a href="https://www.codacy.com/gh/PTB-M4D/PyDynamic/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=PTB-M4D/PyDynamic&amp;utm_campaign=Badge_Grade">
    <img src="https://app.codacy.com/project/badge/Grade/db86b58d6fa5446e8408644c8196f5e2" alt=" PyDynamic's Codacy badge">
  </a>
  <!-- PyPI Version -->
  <a href="https://pypi.org/project/pydynamic">
    <img src="https://img.shields.io/pypi/v/pydynamic.svg?label=release&color=blue&style=flat-square" alt=" PyDynamic's PyPI version number">
  </a>
  <!-- PyPI License -->
  <a href="https://www.gnu.org/licenses/lgpl-3.0.en.html">
    <img alt="PyPI - license badge" src="https://img.shields.io/pypi/l/pydynamic?color=bright">
  </a>
  <!-- Zenodo DOI -->
  <a href="https://doi.org/10.5281/zenodo.1489877">
    <img src="https://zenodo.org/badge/DOI/10.5281/zenodo.1489877.svg" alt="DOI"></a>
</p>

# Python library for the analysis of dynamic measurements

<p align="justify">
The goal of this library is to provide a starting point for users in metrology and
related areas who deal with time-dependent i.e., <i>dynamic</i>, measurements. The
initial version of this software was developed as part of a joint research project of
the national metrology institutes from Germany and the UK, i.e.
<a href="https://www.ptb.de/cms/en.html">Physikalisch-Technische Bundesanstalt</a> 
and the <a href="https://www.npl.co.uk">National Physical Laboratory</a>.
</p>

<p align="justify">
Further development and explicit use of PyDynamic was part of the European research
project <a href="https://www.ptb.de/empir2018/met4fof/home/">EMPIR 17IND12 
Met4FoF</a> and the German research project <a href="https://famous-project.
eu">FAMOUS</a>. Since the end of these two projects, development of PyDynamic continues mostly based on feature requests and smaller collaborations.
</p>

## Table of content

- [Quickstart](#quickstart)
- [Features](#features)
- [Module diagram](#module-diagram)
- [Documentation](#documentation)
- [Installation](#installation)
- [Contributing](#contributing)
- [Examples](#examples)
- [Roadmap](#roadmap)
- [Citation](#citation)
- [Acknowledgement](#acknowledgement)
- [Disclaimer](#disclaimer)
- [License](#license)

## Quickstart

To dive right into it, install PyDynamic and execute one of the examples:

```shell
(my_PyDynamice_venv) $ pip install PyDynamic
Collecting PyDynamic
[...]
Successfully installed PyDynamic-[...]
(my_PyDynamice_venv) $ python
Python 3.9.7 (default, Aug 31 2021, 13:28:12) 
[GCC 11.1.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
```
```python
>>> from PyDynamic.examples.uncertainty_for_dft.deconv_DFT import DftDeconvolutionExample
>>> DftDeconvolutionExample()
Propagating uncertainty associated with measurement through DFT
Propagating uncertainty associated with calibration data to real and imag part
Propagating uncertainty through the inverse system
Propagating uncertainty through the low-pass filter
Propagating uncertainty associated with the estimate back to time domain
```

You will see a couple of plots opening up to observe the results. For 
further information just read on and visit our 
[tutorial section](#examples). 

## Features

PyDynamic offers propagation of *uncertainties* for

- application of the discrete Fourier transform and its inverse
- filtering with an FIR or IIR filter with uncertain coefficients
- design of a FIR filter as the inverse of a frequency response with
  uncertain coefficients
- design on an IIR filter as the inverse of a frequency response with
  uncertain coefficients
- deconvolution in the frequency domain by division
- multiplication in the frequency domain
- transformation from amplitude and phase to a representation by real and
  imaginary parts
- 1-dimensional interpolation

For the validation of the propagation of uncertainties, the Monte-Carlo
method can be applied using a memory-efficient implementation of Monte-Carlo
for digital filtering.

## Module diagram

The fundamental structure of PyDynamic is shown in the following figure.

![PyDynamic module diagram](https://raw.githubusercontent.com/PTB-M4D/PyDynamic/main/docs/PyDynamic_module_diagram.png)

However, imports should generally be possible without explicitly naming all packages
and modules in the path, so that for example the following import statements are all
equivalent.

```python
from PyDynamic.uncertainty.propagate_filter import FIRuncFilter
from PyDynamic.uncertainty import FIRuncFilter
from PyDynamic import FIRuncFilter
```

## Documentation

The documentation for PyDynamic can be found on
[ReadTheDocs](http://pydynamic.readthedocs.io)

## Installation

The installation of PyDynamic is as straightforward as the Python ecosystem suggests.
Detailed instructions on different options to install PyDynamic you can find in the 
[installation section of the docs](https://pydynamic.readthedocs.io/en/latest/INSTALL.html).

## Contributing

Whenever you are involved with PyDynamic, please respect our [Code of Conduct
](https://github.com/PTB-M4D/PyDynamic/blob/main/CODE_OF_CONDUCT.md).
If you want to contribute back to the project, after reading our Code of Conduct,
take a look at our open developments in the [project board
](https://github.com/PTB-M4D/PyDynamic/projects/1), [pull requests
](https://github.com/PTB-M4D/PyDynamic/pulls) and search [the issues
](https://github.com/PTB-M4D/PyDynamic/issues). If you find something similar to
your ideas or troubles, let us know by leaving a comment or remark. If you have
something new to tell us, feel free to open a feature request or bug report in the
issues. If you want to contribute code or improve our documentation, please check our
[contribution advices and tips](https://pydynamic.readthedocs.io/en/latest/CONTRIBUTING.html).

If you have downloaded this software, we would be very thankful for letting
us know. You may, for instance, drop an email to one of the [authors
](https://github.com/PTB-M4D/PyDynamic/graphs/contributors) (e.g.
[Sascha Eichstädt](mailto:sascha.eichstaedt@ptb.de), [Björn Ludwig
](mailto:bjoern.ludwig@ptb.de) or [Maximilian Gruber
](mailto:maximilian.gruber@ptb.de))

## Examples

We have collected extended material for an easier introduction to PyDynamic in the
package _examples_. Detailed assistance on getting started you can find in the
corresponding sections of the docs:

* [examples](https://pydynamic.readthedocs.io/en/latest/Examples.html)
* [tutorials](https://pydynamic.readthedocs.io/en/latest/Tutorials.html)

In various Jupyter Notebooks and scripts we demonstrate the use of
the provided methods to aid the first steps in PyDynamic. New features are introduced
with an example from the beginning if feasible. We are currently moving this supporting
collection to an external repository on GitHub. They will be available at
[github.com/PTB-M4D/PyDynamic_tutorials](https://github.com/PTB-M4D/PyDynamic_tutorials) 
in the near future.

## Roadmap

1. Implementation of robust measurement (sensor) models
1. Extension to more complex noise and uncertainty models
1. Introducing uncertainty propagation for Kalman filters

For a comprehensive overview of current development activities and upcoming tasks,
take a look at the [project board](https://github.com/PTB-M4D/PyDynamic/projects/1),
[issues](https://github.com/PTB-M4D/PyDynamic/issues) and
[pull requests](https://github.com/PTB-M4D/PyDynamic/pulls).

## Citation

If you publish results obtained with the help of PyDynamic, please use the above linked
[Zenodo DOI](https://doi.org/10.5281/zenodo.1489877) for the code itself or cite

Sascha Eichstädt, Clemens Elster, Ian M. Smith, and Trevor J. Esward
*Evaluation of dynamic measurement uncertainty – an open-source software
package to bridge theory and practice*
**J. Sens. Sens. Syst.**, 6, 97-105, 2017, DOI: [10.5194/jsss-6-97-2017
](https://doi.org/10.5194/jsss-6-97-2017)

## Acknowledgement

Part of this work is developed as part of the Joint Research Project [17IND12 Met4FoF
](http://met4fof.eu) of the European Metrology Programme for Innovation and
Research (EMPIR).

This work was part of the Joint Support for Impact project
[14SIP08](https://www.euramet.org/research-innovation/search-research-projects/details/project/standards-and-software-to-maximise-end-user-uptake-of-nmi-calibrations-of-dynamic-force-torque-and/)
of the European Metrology Programme for Innovation and Research (EMPIR). The
[EMPIR](http://msu.euramet.org) is jointly funded by the EMPIR participating 
countries within EURAMET and the European Union.

## Disclaimer

This software is developed at Physikalisch-Technische Bundesanstalt (PTB). The
software is made available "as is" free of cost. PTB assumes no responsibility
whatsoever for its use by other parties, and makes no guarantees, expressed or
implied, about its quality, reliability, safety, suitability or any other
characteristic. In no event will PTB be liable for any direct, indirect or
consequential damage arising in connection with the use of this software.

## License

PyDynamic is distributed under the [LGPLv3 license
](https://github.com/PTB-M4D/PyDynamic/blob/main/licence.txt)
except for the module [`impinvar.py`
](https://github.com/PTB-M4D/PyDynamic/blob/main/src/PyDynamic/misc/impinvar.py) 
in the package [`misc`
](https://pydynamic.readthedocs.io/en/main/PyDynamic.misc.html), 
which is distributed under the [GPLv3 license
](https://github.com/PTB-M4D/PyDynamic/blob/main/src/PyDynamic/misc/impinvar_license.txt).




%package help
Summary:	Development documents and examples for PyDynamic
Provides:	python3-PyDynamic-doc
%description help
<img src="https://raw.githubusercontent.com/PTB-M4D/PyDynamic/main/docs/PyDynamic_logo.svg" alt="the logo of PyDynamic" title="PyDynamic logo">
<p align="center">
  <!-- CircleCI Tests -->
  <a href="https://circleci.com/gh/PTB-M4D/PyDynamic"><img alt="CircleCI pipeline status badge" src="https://circleci.com/gh/PTB-M4D/PyDynamic.svg?style=shield"></a>
  <!-- ReadTheDocs Documentation -->
  <a href="https://pydynamic.readthedocs.io/en/latest/index.html">
    <img src="https://readthedocs.org/projects/pydynamic/badge/?version=latest" alt="PyDynamic's ReadTheDocs status">
  </a>
  <!-- CodeCov(erage) -->
  <a href="https://codecov.io/gh/PTB-M4D/PyDynamic">
    <img src="https://codecov.io/gh/PTB-M4D/PyDynamic/branch/main/graph/badge.svg" alt=" PyDynamic's CodeCov badge">
  </a>
  <!-- Codacy -->
  <a href="https://www.codacy.com/gh/PTB-M4D/PyDynamic/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=PTB-M4D/PyDynamic&amp;utm_campaign=Badge_Grade">
    <img src="https://app.codacy.com/project/badge/Grade/db86b58d6fa5446e8408644c8196f5e2" alt=" PyDynamic's Codacy badge">
  </a>
  <!-- PyPI Version -->
  <a href="https://pypi.org/project/pydynamic">
    <img src="https://img.shields.io/pypi/v/pydynamic.svg?label=release&color=blue&style=flat-square" alt=" PyDynamic's PyPI version number">
  </a>
  <!-- PyPI License -->
  <a href="https://www.gnu.org/licenses/lgpl-3.0.en.html">
    <img alt="PyPI - license badge" src="https://img.shields.io/pypi/l/pydynamic?color=bright">
  </a>
  <!-- Zenodo DOI -->
  <a href="https://doi.org/10.5281/zenodo.1489877">
    <img src="https://zenodo.org/badge/DOI/10.5281/zenodo.1489877.svg" alt="DOI"></a>
</p>

# Python library for the analysis of dynamic measurements

<p align="justify">
The goal of this library is to provide a starting point for users in metrology and
related areas who deal with time-dependent i.e., <i>dynamic</i>, measurements. The
initial version of this software was developed as part of a joint research project of
the national metrology institutes from Germany and the UK, i.e.
<a href="https://www.ptb.de/cms/en.html">Physikalisch-Technische Bundesanstalt</a> 
and the <a href="https://www.npl.co.uk">National Physical Laboratory</a>.
</p>

<p align="justify">
Further development and explicit use of PyDynamic was part of the European research
project <a href="https://www.ptb.de/empir2018/met4fof/home/">EMPIR 17IND12 
Met4FoF</a> and the German research project <a href="https://famous-project.
eu">FAMOUS</a>. Since the end of these two projects, development of PyDynamic continues mostly based on feature requests and smaller collaborations.
</p>

## Table of content

- [Quickstart](#quickstart)
- [Features](#features)
- [Module diagram](#module-diagram)
- [Documentation](#documentation)
- [Installation](#installation)
- [Contributing](#contributing)
- [Examples](#examples)
- [Roadmap](#roadmap)
- [Citation](#citation)
- [Acknowledgement](#acknowledgement)
- [Disclaimer](#disclaimer)
- [License](#license)

## Quickstart

To dive right into it, install PyDynamic and execute one of the examples:

```shell
(my_PyDynamice_venv) $ pip install PyDynamic
Collecting PyDynamic
[...]
Successfully installed PyDynamic-[...]
(my_PyDynamice_venv) $ python
Python 3.9.7 (default, Aug 31 2021, 13:28:12) 
[GCC 11.1.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
```
```python
>>> from PyDynamic.examples.uncertainty_for_dft.deconv_DFT import DftDeconvolutionExample
>>> DftDeconvolutionExample()
Propagating uncertainty associated with measurement through DFT
Propagating uncertainty associated with calibration data to real and imag part
Propagating uncertainty through the inverse system
Propagating uncertainty through the low-pass filter
Propagating uncertainty associated with the estimate back to time domain
```

You will see a couple of plots opening up to observe the results. For 
further information just read on and visit our 
[tutorial section](#examples). 

## Features

PyDynamic offers propagation of *uncertainties* for

- application of the discrete Fourier transform and its inverse
- filtering with an FIR or IIR filter with uncertain coefficients
- design of a FIR filter as the inverse of a frequency response with
  uncertain coefficients
- design on an IIR filter as the inverse of a frequency response with
  uncertain coefficients
- deconvolution in the frequency domain by division
- multiplication in the frequency domain
- transformation from amplitude and phase to a representation by real and
  imaginary parts
- 1-dimensional interpolation

For the validation of the propagation of uncertainties, the Monte-Carlo
method can be applied using a memory-efficient implementation of Monte-Carlo
for digital filtering.

## Module diagram

The fundamental structure of PyDynamic is shown in the following figure.

![PyDynamic module diagram](https://raw.githubusercontent.com/PTB-M4D/PyDynamic/main/docs/PyDynamic_module_diagram.png)

However, imports should generally be possible without explicitly naming all packages
and modules in the path, so that for example the following import statements are all
equivalent.

```python
from PyDynamic.uncertainty.propagate_filter import FIRuncFilter
from PyDynamic.uncertainty import FIRuncFilter
from PyDynamic import FIRuncFilter
```

## Documentation

The documentation for PyDynamic can be found on
[ReadTheDocs](http://pydynamic.readthedocs.io)

## Installation

The installation of PyDynamic is as straightforward as the Python ecosystem suggests.
Detailed instructions on different options to install PyDynamic you can find in the 
[installation section of the docs](https://pydynamic.readthedocs.io/en/latest/INSTALL.html).

## Contributing

Whenever you are involved with PyDynamic, please respect our [Code of Conduct
](https://github.com/PTB-M4D/PyDynamic/blob/main/CODE_OF_CONDUCT.md).
If you want to contribute back to the project, after reading our Code of Conduct,
take a look at our open developments in the [project board
](https://github.com/PTB-M4D/PyDynamic/projects/1), [pull requests
](https://github.com/PTB-M4D/PyDynamic/pulls) and search [the issues
](https://github.com/PTB-M4D/PyDynamic/issues). If you find something similar to
your ideas or troubles, let us know by leaving a comment or remark. If you have
something new to tell us, feel free to open a feature request or bug report in the
issues. If you want to contribute code or improve our documentation, please check our
[contribution advices and tips](https://pydynamic.readthedocs.io/en/latest/CONTRIBUTING.html).

If you have downloaded this software, we would be very thankful for letting
us know. You may, for instance, drop an email to one of the [authors
](https://github.com/PTB-M4D/PyDynamic/graphs/contributors) (e.g.
[Sascha Eichstädt](mailto:sascha.eichstaedt@ptb.de), [Björn Ludwig
](mailto:bjoern.ludwig@ptb.de) or [Maximilian Gruber
](mailto:maximilian.gruber@ptb.de))

## Examples

We have collected extended material for an easier introduction to PyDynamic in the
package _examples_. Detailed assistance on getting started you can find in the
corresponding sections of the docs:

* [examples](https://pydynamic.readthedocs.io/en/latest/Examples.html)
* [tutorials](https://pydynamic.readthedocs.io/en/latest/Tutorials.html)

In various Jupyter Notebooks and scripts we demonstrate the use of
the provided methods to aid the first steps in PyDynamic. New features are introduced
with an example from the beginning if feasible. We are currently moving this supporting
collection to an external repository on GitHub. They will be available at
[github.com/PTB-M4D/PyDynamic_tutorials](https://github.com/PTB-M4D/PyDynamic_tutorials) 
in the near future.

## Roadmap

1. Implementation of robust measurement (sensor) models
1. Extension to more complex noise and uncertainty models
1. Introducing uncertainty propagation for Kalman filters

For a comprehensive overview of current development activities and upcoming tasks,
take a look at the [project board](https://github.com/PTB-M4D/PyDynamic/projects/1),
[issues](https://github.com/PTB-M4D/PyDynamic/issues) and
[pull requests](https://github.com/PTB-M4D/PyDynamic/pulls).

## Citation

If you publish results obtained with the help of PyDynamic, please use the above linked
[Zenodo DOI](https://doi.org/10.5281/zenodo.1489877) for the code itself or cite

Sascha Eichstädt, Clemens Elster, Ian M. Smith, and Trevor J. Esward
*Evaluation of dynamic measurement uncertainty – an open-source software
package to bridge theory and practice*
**J. Sens. Sens. Syst.**, 6, 97-105, 2017, DOI: [10.5194/jsss-6-97-2017
](https://doi.org/10.5194/jsss-6-97-2017)

## Acknowledgement

Part of this work is developed as part of the Joint Research Project [17IND12 Met4FoF
](http://met4fof.eu) of the European Metrology Programme for Innovation and
Research (EMPIR).

This work was part of the Joint Support for Impact project
[14SIP08](https://www.euramet.org/research-innovation/search-research-projects/details/project/standards-and-software-to-maximise-end-user-uptake-of-nmi-calibrations-of-dynamic-force-torque-and/)
of the European Metrology Programme for Innovation and Research (EMPIR). The
[EMPIR](http://msu.euramet.org) is jointly funded by the EMPIR participating 
countries within EURAMET and the European Union.

## Disclaimer

This software is developed at Physikalisch-Technische Bundesanstalt (PTB). The
software is made available "as is" free of cost. PTB assumes no responsibility
whatsoever for its use by other parties, and makes no guarantees, expressed or
implied, about its quality, reliability, safety, suitability or any other
characteristic. In no event will PTB be liable for any direct, indirect or
consequential damage arising in connection with the use of this software.

## License

PyDynamic is distributed under the [LGPLv3 license
](https://github.com/PTB-M4D/PyDynamic/blob/main/licence.txt)
except for the module [`impinvar.py`
](https://github.com/PTB-M4D/PyDynamic/blob/main/src/PyDynamic/misc/impinvar.py) 
in the package [`misc`
](https://pydynamic.readthedocs.io/en/main/PyDynamic.misc.html), 
which is distributed under the [GPLv3 license
](https://github.com/PTB-M4D/PyDynamic/blob/main/src/PyDynamic/misc/impinvar_license.txt).




%prep
%autosetup -n PyDynamic-2.4.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-PyDynamic -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.0-1
- Package Spec generated