1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
%global _empty_manifest_terminate_build 0
Name: python-pyech
Version: 0.1.0
Release: 1
Summary: Process INE's ECH surveys in Python.
License: MIT
URL: https://github.com/cpa-analytics/pyech
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/32/25/24fc4e49f651d77afab7c560e3adca4ae9104f87cd8009ffb4b76aeeeaf0/pyech-0.1.0.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-patool
Requires: python3-pyreadstat
Requires: python3-pandas-weighting
Requires: python3-openpyxl
Requires: python3-xlrd
Requires: python3-tables
%description
<img src="https://github.com/CPA-Analytics/pyech/raw/master/logo.png" width=400 style="margin-bottom:60px;display:block;margin:0 auto">

[](https://pyech.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/pyech)
[](https://www.python.org/downloads/release/python-370/)
# Overview
A simple package that streamlines the download-read-wrangling process needed to analyze the [Encuesta Continua de Hogares](https://www.ine.gub.uy/encuesta-continua-de-hogares1) survey carried out by the Instituto Nacional de Estadística (Uruguay).
Here's what PyECH can do:
* Download survey compressed files.
* Unrar, rename and move the SAV (SPSS) file to a specified path.
* Read surveys from SAV files, keeping variable and value labels.
* Download and process variable dictionaries.
* Search through variable dictionaries.
* Summarize variables.
* Calculate variable n-tiles.
* Convert variables to real terms or USD.
PyECH does not attempt to estimate any indicators in particular, or facilitate any kind of modelling, or concatenate surveys from multiple years. Instead, it aims at providing a hassle-free experience with as simple a syntax as possible.
Surprisingly, PyECH covers a lot of what people tend to do with the ECH survey without having to deal with software licensing.
For R users, check out [ech](https://github.com/calcita/ech).
# Installation
```bash
pip install pyech
```
## Dependencies
In order to unpack downloaded survey files you will need to have unrar in your system. This should be covered if you have WinRAR or 7zip installed. Otherwise `sudo apt-get install unrar` or what's appropiate for your system.
# Usage
* [Full documentation, including this readme](https://pyech.readthedocs.io).
* Run the examples notebook in your browser | [](https://colab.research.google.com/github/CPA-Analytics/pyech/blob/master/examples/example.ipynb)
Loading a survey is as simple as using `ECH.load`, which will download it if it cannot be found at `dirpath` (by default the current working directory).
```python
from pyech import ECH
survey = ECH()
survey.load(year=2019, weights="pesoano")
```
Optionally, `load` accepts `from_repo=True`, which downloads survey data from the PyECH Github repository (HDFS+JSON). Loading data this way is significantly faster.
`ECH.load` also downloads the corresponding variable dictionary, which can be easily searched.
```python
survey.search_dictionary("ingreso", ignore_case=True, regex=True)
```
This will return a pandas DataFrame where every row matches the search term in any of its columns.
Calculating aggregations is as simple as using `ECH.summarize`.
```python
survey.summarize("ht11", by="dpto", aggfunc="mean", household_level=True)
```
Which returns a pandas DataFrame with the mean of "ht11" grouped by `ECH.splitter` and `by` (both are optional). Cases are weighted by the column defined in `ECH.load`.
%package -n python3-pyech
Summary: Process INE's ECH surveys in Python.
Provides: python-pyech
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pyech
<img src="https://github.com/CPA-Analytics/pyech/raw/master/logo.png" width=400 style="margin-bottom:60px;display:block;margin:0 auto">

[](https://pyech.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/pyech)
[](https://www.python.org/downloads/release/python-370/)
# Overview
A simple package that streamlines the download-read-wrangling process needed to analyze the [Encuesta Continua de Hogares](https://www.ine.gub.uy/encuesta-continua-de-hogares1) survey carried out by the Instituto Nacional de Estadística (Uruguay).
Here's what PyECH can do:
* Download survey compressed files.
* Unrar, rename and move the SAV (SPSS) file to a specified path.
* Read surveys from SAV files, keeping variable and value labels.
* Download and process variable dictionaries.
* Search through variable dictionaries.
* Summarize variables.
* Calculate variable n-tiles.
* Convert variables to real terms or USD.
PyECH does not attempt to estimate any indicators in particular, or facilitate any kind of modelling, or concatenate surveys from multiple years. Instead, it aims at providing a hassle-free experience with as simple a syntax as possible.
Surprisingly, PyECH covers a lot of what people tend to do with the ECH survey without having to deal with software licensing.
For R users, check out [ech](https://github.com/calcita/ech).
# Installation
```bash
pip install pyech
```
## Dependencies
In order to unpack downloaded survey files you will need to have unrar in your system. This should be covered if you have WinRAR or 7zip installed. Otherwise `sudo apt-get install unrar` or what's appropiate for your system.
# Usage
* [Full documentation, including this readme](https://pyech.readthedocs.io).
* Run the examples notebook in your browser | [](https://colab.research.google.com/github/CPA-Analytics/pyech/blob/master/examples/example.ipynb)
Loading a survey is as simple as using `ECH.load`, which will download it if it cannot be found at `dirpath` (by default the current working directory).
```python
from pyech import ECH
survey = ECH()
survey.load(year=2019, weights="pesoano")
```
Optionally, `load` accepts `from_repo=True`, which downloads survey data from the PyECH Github repository (HDFS+JSON). Loading data this way is significantly faster.
`ECH.load` also downloads the corresponding variable dictionary, which can be easily searched.
```python
survey.search_dictionary("ingreso", ignore_case=True, regex=True)
```
This will return a pandas DataFrame where every row matches the search term in any of its columns.
Calculating aggregations is as simple as using `ECH.summarize`.
```python
survey.summarize("ht11", by="dpto", aggfunc="mean", household_level=True)
```
Which returns a pandas DataFrame with the mean of "ht11" grouped by `ECH.splitter` and `by` (both are optional). Cases are weighted by the column defined in `ECH.load`.
%package help
Summary: Development documents and examples for pyech
Provides: python3-pyech-doc
%description help
<img src="https://github.com/CPA-Analytics/pyech/raw/master/logo.png" width=400 style="margin-bottom:60px;display:block;margin:0 auto">

[](https://pyech.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/pyech)
[](https://www.python.org/downloads/release/python-370/)
# Overview
A simple package that streamlines the download-read-wrangling process needed to analyze the [Encuesta Continua de Hogares](https://www.ine.gub.uy/encuesta-continua-de-hogares1) survey carried out by the Instituto Nacional de Estadística (Uruguay).
Here's what PyECH can do:
* Download survey compressed files.
* Unrar, rename and move the SAV (SPSS) file to a specified path.
* Read surveys from SAV files, keeping variable and value labels.
* Download and process variable dictionaries.
* Search through variable dictionaries.
* Summarize variables.
* Calculate variable n-tiles.
* Convert variables to real terms or USD.
PyECH does not attempt to estimate any indicators in particular, or facilitate any kind of modelling, or concatenate surveys from multiple years. Instead, it aims at providing a hassle-free experience with as simple a syntax as possible.
Surprisingly, PyECH covers a lot of what people tend to do with the ECH survey without having to deal with software licensing.
For R users, check out [ech](https://github.com/calcita/ech).
# Installation
```bash
pip install pyech
```
## Dependencies
In order to unpack downloaded survey files you will need to have unrar in your system. This should be covered if you have WinRAR or 7zip installed. Otherwise `sudo apt-get install unrar` or what's appropiate for your system.
# Usage
* [Full documentation, including this readme](https://pyech.readthedocs.io).
* Run the examples notebook in your browser | [](https://colab.research.google.com/github/CPA-Analytics/pyech/blob/master/examples/example.ipynb)
Loading a survey is as simple as using `ECH.load`, which will download it if it cannot be found at `dirpath` (by default the current working directory).
```python
from pyech import ECH
survey = ECH()
survey.load(year=2019, weights="pesoano")
```
Optionally, `load` accepts `from_repo=True`, which downloads survey data from the PyECH Github repository (HDFS+JSON). Loading data this way is significantly faster.
`ECH.load` also downloads the corresponding variable dictionary, which can be easily searched.
```python
survey.search_dictionary("ingreso", ignore_case=True, regex=True)
```
This will return a pandas DataFrame where every row matches the search term in any of its columns.
Calculating aggregations is as simple as using `ECH.summarize`.
```python
survey.summarize("ht11", by="dpto", aggfunc="mean", household_level=True)
```
Which returns a pandas DataFrame with the mean of "ht11" grouped by `ECH.splitter` and `by` (both are optional). Cases are weighted by the column defined in `ECH.load`.
%prep
%autosetup -n pyech-0.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyech -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
- Package Spec generated
|