summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-pyevaldata.spec379
-rw-r--r--sources1
3 files changed, 381 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..cce11d2 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/pyEvalData-1.5.1.tar.gz
diff --git a/python-pyevaldata.spec b/python-pyevaldata.spec
new file mode 100644
index 0000000..2e891e3
--- /dev/null
+++ b/python-pyevaldata.spec
@@ -0,0 +1,379 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pyEvalData
+Version: 1.5.1
+Release: 1
+Summary: Python module to evaluate experimental data
+License: MIT
+URL: https://github.com/dschick/pyEvalData
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/96/b6/4a1ba329db5fe52fc141f13bcbb7ae802f062611a22cbca226ed22732af1/pyEvalData-1.5.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-matplotlib
+Requires: python3-lmfit
+Requires: python3-scipy
+Requires: python3-uncertainties
+Requires: python3-xrayutilities
+Requires: python3-h5py
+Requires: python3-nexusformat
+Requires: python3-sphinx
+Requires: python3-nbsphinx
+Requires: python3-sphinxcontrib-napoleon
+Requires: python3-flake8
+Requires: python3-pytest
+
+%description
+# Welcome to pyEvalData
+
+[![Documentation Status](https://readthedocs.org/projects/pyevaldata/badge/?version=latest)](https://pyevaldata.readthedocs.io/en/latest/?badge=latest)
+![CI](https://github.com/dschick/pyEvalData/actions/workflows/main.yml/badge.svg)
+![pypi](https://github.com/dschick/pyEvalData/actions/workflows/upload-to-pypi.yml/badge.svg)
+[![codecov](https://codecov.io/gh/dschick/pyEvalData/branch/develop/graph/badge.svg?token=B73OXF4YRI)](https://codecov.io/gh/dschick/pyEvalData)
+
+This is a Python module to read and evaluate experimental data. It can handle
+raw data from different sources such as
+[spec](https://certif.com/content/spec/),
+[hdf5](https://www.hdfgroup.org/solutions/hdf5/),
+[NeXus](https://www.nexusformat.org/) files which are common data formats at
+synchrotrons, FELs, as well as in a growing number of laboratories. The
+evaluation provides common functionalities such as binning, error calculation,
+and advanced data manipulation via algebraic expressions as well as pre- and
+post-data-filters. Furthermore, advanced wrapper functions allow for plotting
+and fitting sequences of one or multiple scans in dependence of an external
+parameter.
+
+A minimal code example would look like this:
+
+```python
+import pyEvalData as ped
+# define your data source
+spec = ped.io.Spec(file_name='data.spec')
+# initialize the evaluation
+ev = ped.Evaluation(spec)
+# define the x- and y-data
+ev.xcol = 'motor1'
+ev.clist = ['ct1', 'ct2', 'ct1/ct2']
+# create a plot for scans 1-3
+ev.plot_scans([1, 2, 3])
+```
+
+Please follow the [user guide](https://pyevaldata.readthedocs.io/en/latest/user_guide.html)
+and [examples](https://pyevaldata.readthedocs.io/en/latest/examples.html) for
+your first steps with `pyEvalData`.
+
+## Features
+
+- reading of several pre-defined raw data formats
+ * [spec](https://certif.com/content/spec/)
+ * [hdf5](https://www.hdfgroup.org/solutions/hdf5/)
+ * [NeXus](https://www.nexusformat.org/)
+ * user-defined text files
+ * camera images (Dectris Pilatus, Princeton MTE, Greateyes, ...)
+ * composite sources
+- easy implementation of new raw-data formats using an `interface class`
+- common methods for plotting and fitting of experimental data, including:
+ * data binning
+ * error calculation
+ * data manipulation via algebraic expressions
+ * common data pre- and post-filters
+
+## Installation
+
+You can either install directly from
+[pypi.org](https://www.pypi.org/project/pyEvalData) using the command
+
+ $ pip install pyEvalData
+
+or if you want to work on the latest develop release you can clone
+`pyEvalData` from the main git repository:
+
+ $ git clone https://github.com/dschick/pyEvalData.git pyEvalData
+
+To work in editable mode (source is only linked
+but not copied to the python site-packages), just do:
+
+ $ pip install -e ./pyEvalData
+
+Or to do a normal install with
+
+ $ pip install ./pyEvalData
+
+Optionally, you can also let pip install directly from the repository:
+
+ $ pip install git+https://github.com/dschick/pyEvalData.git
+
+You can have the following optional installations to enable unit tests, as well
+as building the documentation:
+
+ $ pip install pyEvalData[testing]
+ $ pip install pyEvalData[documentation]
+
+## Contribute & Support
+
+If you are having issues please let us know via the
+[issue tracker](https://github.com/dschick/pyEvalData/issues).
+
+You can contribute to the project via pull-requests following the
+[GitHub flow concept](https://docs.github.com/en/get-started/quickstart/github-flow).
+
+## License
+
+The project is licensed under the MIT license.
+
+
+
+
+%package -n python3-pyEvalData
+Summary: Python module to evaluate experimental data
+Provides: python-pyEvalData
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pyEvalData
+# Welcome to pyEvalData
+
+[![Documentation Status](https://readthedocs.org/projects/pyevaldata/badge/?version=latest)](https://pyevaldata.readthedocs.io/en/latest/?badge=latest)
+![CI](https://github.com/dschick/pyEvalData/actions/workflows/main.yml/badge.svg)
+![pypi](https://github.com/dschick/pyEvalData/actions/workflows/upload-to-pypi.yml/badge.svg)
+[![codecov](https://codecov.io/gh/dschick/pyEvalData/branch/develop/graph/badge.svg?token=B73OXF4YRI)](https://codecov.io/gh/dschick/pyEvalData)
+
+This is a Python module to read and evaluate experimental data. It can handle
+raw data from different sources such as
+[spec](https://certif.com/content/spec/),
+[hdf5](https://www.hdfgroup.org/solutions/hdf5/),
+[NeXus](https://www.nexusformat.org/) files which are common data formats at
+synchrotrons, FELs, as well as in a growing number of laboratories. The
+evaluation provides common functionalities such as binning, error calculation,
+and advanced data manipulation via algebraic expressions as well as pre- and
+post-data-filters. Furthermore, advanced wrapper functions allow for plotting
+and fitting sequences of one or multiple scans in dependence of an external
+parameter.
+
+A minimal code example would look like this:
+
+```python
+import pyEvalData as ped
+# define your data source
+spec = ped.io.Spec(file_name='data.spec')
+# initialize the evaluation
+ev = ped.Evaluation(spec)
+# define the x- and y-data
+ev.xcol = 'motor1'
+ev.clist = ['ct1', 'ct2', 'ct1/ct2']
+# create a plot for scans 1-3
+ev.plot_scans([1, 2, 3])
+```
+
+Please follow the [user guide](https://pyevaldata.readthedocs.io/en/latest/user_guide.html)
+and [examples](https://pyevaldata.readthedocs.io/en/latest/examples.html) for
+your first steps with `pyEvalData`.
+
+## Features
+
+- reading of several pre-defined raw data formats
+ * [spec](https://certif.com/content/spec/)
+ * [hdf5](https://www.hdfgroup.org/solutions/hdf5/)
+ * [NeXus](https://www.nexusformat.org/)
+ * user-defined text files
+ * camera images (Dectris Pilatus, Princeton MTE, Greateyes, ...)
+ * composite sources
+- easy implementation of new raw-data formats using an `interface class`
+- common methods for plotting and fitting of experimental data, including:
+ * data binning
+ * error calculation
+ * data manipulation via algebraic expressions
+ * common data pre- and post-filters
+
+## Installation
+
+You can either install directly from
+[pypi.org](https://www.pypi.org/project/pyEvalData) using the command
+
+ $ pip install pyEvalData
+
+or if you want to work on the latest develop release you can clone
+`pyEvalData` from the main git repository:
+
+ $ git clone https://github.com/dschick/pyEvalData.git pyEvalData
+
+To work in editable mode (source is only linked
+but not copied to the python site-packages), just do:
+
+ $ pip install -e ./pyEvalData
+
+Or to do a normal install with
+
+ $ pip install ./pyEvalData
+
+Optionally, you can also let pip install directly from the repository:
+
+ $ pip install git+https://github.com/dschick/pyEvalData.git
+
+You can have the following optional installations to enable unit tests, as well
+as building the documentation:
+
+ $ pip install pyEvalData[testing]
+ $ pip install pyEvalData[documentation]
+
+## Contribute & Support
+
+If you are having issues please let us know via the
+[issue tracker](https://github.com/dschick/pyEvalData/issues).
+
+You can contribute to the project via pull-requests following the
+[GitHub flow concept](https://docs.github.com/en/get-started/quickstart/github-flow).
+
+## License
+
+The project is licensed under the MIT license.
+
+
+
+
+%package help
+Summary: Development documents and examples for pyEvalData
+Provides: python3-pyEvalData-doc
+%description help
+# Welcome to pyEvalData
+
+[![Documentation Status](https://readthedocs.org/projects/pyevaldata/badge/?version=latest)](https://pyevaldata.readthedocs.io/en/latest/?badge=latest)
+![CI](https://github.com/dschick/pyEvalData/actions/workflows/main.yml/badge.svg)
+![pypi](https://github.com/dschick/pyEvalData/actions/workflows/upload-to-pypi.yml/badge.svg)
+[![codecov](https://codecov.io/gh/dschick/pyEvalData/branch/develop/graph/badge.svg?token=B73OXF4YRI)](https://codecov.io/gh/dschick/pyEvalData)
+
+This is a Python module to read and evaluate experimental data. It can handle
+raw data from different sources such as
+[spec](https://certif.com/content/spec/),
+[hdf5](https://www.hdfgroup.org/solutions/hdf5/),
+[NeXus](https://www.nexusformat.org/) files which are common data formats at
+synchrotrons, FELs, as well as in a growing number of laboratories. The
+evaluation provides common functionalities such as binning, error calculation,
+and advanced data manipulation via algebraic expressions as well as pre- and
+post-data-filters. Furthermore, advanced wrapper functions allow for plotting
+and fitting sequences of one or multiple scans in dependence of an external
+parameter.
+
+A minimal code example would look like this:
+
+```python
+import pyEvalData as ped
+# define your data source
+spec = ped.io.Spec(file_name='data.spec')
+# initialize the evaluation
+ev = ped.Evaluation(spec)
+# define the x- and y-data
+ev.xcol = 'motor1'
+ev.clist = ['ct1', 'ct2', 'ct1/ct2']
+# create a plot for scans 1-3
+ev.plot_scans([1, 2, 3])
+```
+
+Please follow the [user guide](https://pyevaldata.readthedocs.io/en/latest/user_guide.html)
+and [examples](https://pyevaldata.readthedocs.io/en/latest/examples.html) for
+your first steps with `pyEvalData`.
+
+## Features
+
+- reading of several pre-defined raw data formats
+ * [spec](https://certif.com/content/spec/)
+ * [hdf5](https://www.hdfgroup.org/solutions/hdf5/)
+ * [NeXus](https://www.nexusformat.org/)
+ * user-defined text files
+ * camera images (Dectris Pilatus, Princeton MTE, Greateyes, ...)
+ * composite sources
+- easy implementation of new raw-data formats using an `interface class`
+- common methods for plotting and fitting of experimental data, including:
+ * data binning
+ * error calculation
+ * data manipulation via algebraic expressions
+ * common data pre- and post-filters
+
+## Installation
+
+You can either install directly from
+[pypi.org](https://www.pypi.org/project/pyEvalData) using the command
+
+ $ pip install pyEvalData
+
+or if you want to work on the latest develop release you can clone
+`pyEvalData` from the main git repository:
+
+ $ git clone https://github.com/dschick/pyEvalData.git pyEvalData
+
+To work in editable mode (source is only linked
+but not copied to the python site-packages), just do:
+
+ $ pip install -e ./pyEvalData
+
+Or to do a normal install with
+
+ $ pip install ./pyEvalData
+
+Optionally, you can also let pip install directly from the repository:
+
+ $ pip install git+https://github.com/dschick/pyEvalData.git
+
+You can have the following optional installations to enable unit tests, as well
+as building the documentation:
+
+ $ pip install pyEvalData[testing]
+ $ pip install pyEvalData[documentation]
+
+## Contribute & Support
+
+If you are having issues please let us know via the
+[issue tracker](https://github.com/dschick/pyEvalData/issues).
+
+You can contribute to the project via pull-requests following the
+[GitHub flow concept](https://docs.github.com/en/get-started/quickstart/github-flow).
+
+## License
+
+The project is licensed under the MIT license.
+
+
+
+
+%prep
+%autosetup -n pyEvalData-1.5.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pyEvalData -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..1b28fea
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+7f0d1f0cbe3ce0a3788cde5ce85df97c pyEvalData-1.5.1.tar.gz