summaryrefslogtreecommitdiff
path: root/python-pygam.spec
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 14:03:20 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 14:03:20 +0000
commit1f8196973494e570e30882371c1549baacb9fd2b (patch)
treeeb51a0b084d4de29b9ebece8bc938897436b61fb /python-pygam.spec
parentd9f0de378d5457d01ee50d8216fdc6871271ffff (diff)
automatic import of python-pygam
Diffstat (limited to 'python-pygam.spec')
-rw-r--r--python-pygam.spec321
1 files changed, 321 insertions, 0 deletions
diff --git a/python-pygam.spec b/python-pygam.spec
new file mode 100644
index 0000000..b072e1c
--- /dev/null
+++ b/python-pygam.spec
@@ -0,0 +1,321 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pygam
+Version: 0.9.0
+Release: 1
+Summary: please add a summary manually as the author left a blank one
+License: Apache-2.0
+URL: https://pypi.org/project/pygam/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/39/26/6e6756bc2398648bc26322d94aa02668319297884e0eea79dd9a5ecdc703/pygam-0.9.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-progressbar2
+Requires: python3-scipy
+
+%description
+## Installation
+```pip install pygam```
+### scikit-sparse
+To speed up optimization on large models with constraints, it helps to have `scikit-sparse` installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from `scikit-sparse` references `nose`, so you'll need that too.
+The easiest way is to use Conda:
+```conda install -c conda-forge scikit-sparse nose```
+[scikit-sparse docs](http://pythonhosted.org/scikit-sparse/overview.html#download)
+## Contributing - HELP REQUESTED
+Contributions are most welcome!
+You can help pyGAM in many ways including:
+- Working on a [known bug](https://github.com/dswah/pyGAM/labels/bug).
+- Trying it out and reporting bugs or what was difficult.
+- Helping improve the documentation.
+- Writing new [distributions](https://github.com/dswah/pyGAM/blob/master/pygam/distributions.py), and [link functions](https://github.com/dswah/pyGAM/blob/master/pygam/links.py).
+- If you need some ideas, please take a look at the [issues](https://github.com/dswah/pyGAM/issues).
+To start:
+- **fork the project** and cut a new branch
+- Now **install** the testing **dependencies**
+```
+conda install pytest numpy pandas scipy pytest-cov cython
+pip install --upgrade pip
+pip install -r requirements.txt
+```
+It helps to add a **sym-link** of the forked project to your **python path**. To do this, you should **install [flit](http://flit.readthedocs.io/en/latest/index.html)**:
+- ```pip install flit```
+- Then from main project folder (ie `.../pyGAM`) do:
+```flit install -s```
+Make some changes and write a test...
+- **Test** your contribution (eg from the `.../pyGAM`):
+```py.test -s```
+- When you are happy with your changes, make a **pull request** into the `master` branch of the main project.
+## About
+Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:
+![alt tag](http://latex.codecogs.com/svg.latex?g\(\mathbb{E}\[y|X\]\)=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p))
+where `X.T = [X_1, X_2, ..., X_p]` are independent variables, `y` is the dependent variable, and `g()` is the link function that relates our predictor variables to the expected value of the dependent variable.
+The feature functions `f_i()` are built using **penalized B splines**, which allow us to **automatically model non-linear relationships** without having to manually try out many different transformations on each variable.
+<img src=imgs/pygam_basis.png>
+GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each `X_i` on `Y` individually while holding all other predictors constant.
+The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.
+## Citing pyGAM
+Please consider citing pyGAM if it has helped you in your research or work:
+Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. [DOI: 10.5281/zenodo.1208723](http://doi.org/10.5281/zenodo.1208723)
+BibTex:
+```
+@misc{daniel\_serven\_2018_1208723,
+ author = {Daniel Servén and
+ Charlie Brummitt},
+ title = {pyGAM: Generalized Additive Models in Python},
+ month = mar,
+ year = 2018,
+ doi = {10.5281/zenodo.1208723},
+ url = {https://doi.org/10.5281/zenodo.1208723}
+}
+```
+## References
+1. Simon N. Wood, 2006
+Generalized Additive Models: an introduction with R
+0. Hastie, Tibshirani, Friedman
+The Elements of Statistical Learning
+http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
+0. James, Witten, Hastie and Tibshirani
+An Introduction to Statistical Learning
+http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
+0. Paul Eilers & Brian Marx, 1996
+Flexible Smoothing with B-splines and Penalties
+http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf
+0. Kim Larsen, 2015
+GAM: The Predictive Modeling Silver Bullet
+http://multithreaded.stitchfix.com/assets/files/gam.pdf
+0. Deva Ramanan, 2008
+UCI Machine Learning: Notes on IRLS
+http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf
+0. Paul Eilers & Brian Marx, 2015
+International Biometric Society: A Crash Course on P-splines
+http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf
+0. Keiding, Niels, 1991
+Age-specific incidence and prevalence: a statistical perspective
+<!---http://www.cs.princeton.edu/courses/archive/fall11/cos323/notes/cos323_f11_lecture09_svd.pdf--->
+<!---http://www.stats.uwo.ca/faculty/braun/ss3859/notes/Chapter4/ch4.pdf--->
+<!---http://www.stat.berkeley.edu/~census/mlesan.pdf--->
+<!---http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node17.html---> <!--- this helped me get spline gradients--->
+<!---https://scikit-sparse.readthedocs.io/en/latest/overview.html#developers--->
+<!---https://vincentarelbundock.github.io/Rdatasets/datasets.html---> <!--- R Datasets!--->
+
+%package -n python3-pygam
+Summary: please add a summary manually as the author left a blank one
+Provides: python-pygam
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pygam
+## Installation
+```pip install pygam```
+### scikit-sparse
+To speed up optimization on large models with constraints, it helps to have `scikit-sparse` installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from `scikit-sparse` references `nose`, so you'll need that too.
+The easiest way is to use Conda:
+```conda install -c conda-forge scikit-sparse nose```
+[scikit-sparse docs](http://pythonhosted.org/scikit-sparse/overview.html#download)
+## Contributing - HELP REQUESTED
+Contributions are most welcome!
+You can help pyGAM in many ways including:
+- Working on a [known bug](https://github.com/dswah/pyGAM/labels/bug).
+- Trying it out and reporting bugs or what was difficult.
+- Helping improve the documentation.
+- Writing new [distributions](https://github.com/dswah/pyGAM/blob/master/pygam/distributions.py), and [link functions](https://github.com/dswah/pyGAM/blob/master/pygam/links.py).
+- If you need some ideas, please take a look at the [issues](https://github.com/dswah/pyGAM/issues).
+To start:
+- **fork the project** and cut a new branch
+- Now **install** the testing **dependencies**
+```
+conda install pytest numpy pandas scipy pytest-cov cython
+pip install --upgrade pip
+pip install -r requirements.txt
+```
+It helps to add a **sym-link** of the forked project to your **python path**. To do this, you should **install [flit](http://flit.readthedocs.io/en/latest/index.html)**:
+- ```pip install flit```
+- Then from main project folder (ie `.../pyGAM`) do:
+```flit install -s```
+Make some changes and write a test...
+- **Test** your contribution (eg from the `.../pyGAM`):
+```py.test -s```
+- When you are happy with your changes, make a **pull request** into the `master` branch of the main project.
+## About
+Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:
+![alt tag](http://latex.codecogs.com/svg.latex?g\(\mathbb{E}\[y|X\]\)=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p))
+where `X.T = [X_1, X_2, ..., X_p]` are independent variables, `y` is the dependent variable, and `g()` is the link function that relates our predictor variables to the expected value of the dependent variable.
+The feature functions `f_i()` are built using **penalized B splines**, which allow us to **automatically model non-linear relationships** without having to manually try out many different transformations on each variable.
+<img src=imgs/pygam_basis.png>
+GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each `X_i` on `Y` individually while holding all other predictors constant.
+The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.
+## Citing pyGAM
+Please consider citing pyGAM if it has helped you in your research or work:
+Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. [DOI: 10.5281/zenodo.1208723](http://doi.org/10.5281/zenodo.1208723)
+BibTex:
+```
+@misc{daniel\_serven\_2018_1208723,
+ author = {Daniel Servén and
+ Charlie Brummitt},
+ title = {pyGAM: Generalized Additive Models in Python},
+ month = mar,
+ year = 2018,
+ doi = {10.5281/zenodo.1208723},
+ url = {https://doi.org/10.5281/zenodo.1208723}
+}
+```
+## References
+1. Simon N. Wood, 2006
+Generalized Additive Models: an introduction with R
+0. Hastie, Tibshirani, Friedman
+The Elements of Statistical Learning
+http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
+0. James, Witten, Hastie and Tibshirani
+An Introduction to Statistical Learning
+http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
+0. Paul Eilers & Brian Marx, 1996
+Flexible Smoothing with B-splines and Penalties
+http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf
+0. Kim Larsen, 2015
+GAM: The Predictive Modeling Silver Bullet
+http://multithreaded.stitchfix.com/assets/files/gam.pdf
+0. Deva Ramanan, 2008
+UCI Machine Learning: Notes on IRLS
+http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf
+0. Paul Eilers & Brian Marx, 2015
+International Biometric Society: A Crash Course on P-splines
+http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf
+0. Keiding, Niels, 1991
+Age-specific incidence and prevalence: a statistical perspective
+<!---http://www.cs.princeton.edu/courses/archive/fall11/cos323/notes/cos323_f11_lecture09_svd.pdf--->
+<!---http://www.stats.uwo.ca/faculty/braun/ss3859/notes/Chapter4/ch4.pdf--->
+<!---http://www.stat.berkeley.edu/~census/mlesan.pdf--->
+<!---http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node17.html---> <!--- this helped me get spline gradients--->
+<!---https://scikit-sparse.readthedocs.io/en/latest/overview.html#developers--->
+<!---https://vincentarelbundock.github.io/Rdatasets/datasets.html---> <!--- R Datasets!--->
+
+%package help
+Summary: Development documents and examples for pygam
+Provides: python3-pygam-doc
+%description help
+## Installation
+```pip install pygam```
+### scikit-sparse
+To speed up optimization on large models with constraints, it helps to have `scikit-sparse` installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from `scikit-sparse` references `nose`, so you'll need that too.
+The easiest way is to use Conda:
+```conda install -c conda-forge scikit-sparse nose```
+[scikit-sparse docs](http://pythonhosted.org/scikit-sparse/overview.html#download)
+## Contributing - HELP REQUESTED
+Contributions are most welcome!
+You can help pyGAM in many ways including:
+- Working on a [known bug](https://github.com/dswah/pyGAM/labels/bug).
+- Trying it out and reporting bugs or what was difficult.
+- Helping improve the documentation.
+- Writing new [distributions](https://github.com/dswah/pyGAM/blob/master/pygam/distributions.py), and [link functions](https://github.com/dswah/pyGAM/blob/master/pygam/links.py).
+- If you need some ideas, please take a look at the [issues](https://github.com/dswah/pyGAM/issues).
+To start:
+- **fork the project** and cut a new branch
+- Now **install** the testing **dependencies**
+```
+conda install pytest numpy pandas scipy pytest-cov cython
+pip install --upgrade pip
+pip install -r requirements.txt
+```
+It helps to add a **sym-link** of the forked project to your **python path**. To do this, you should **install [flit](http://flit.readthedocs.io/en/latest/index.html)**:
+- ```pip install flit```
+- Then from main project folder (ie `.../pyGAM`) do:
+```flit install -s```
+Make some changes and write a test...
+- **Test** your contribution (eg from the `.../pyGAM`):
+```py.test -s```
+- When you are happy with your changes, make a **pull request** into the `master` branch of the main project.
+## About
+Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:
+![alt tag](http://latex.codecogs.com/svg.latex?g\(\mathbb{E}\[y|X\]\)=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p))
+where `X.T = [X_1, X_2, ..., X_p]` are independent variables, `y` is the dependent variable, and `g()` is the link function that relates our predictor variables to the expected value of the dependent variable.
+The feature functions `f_i()` are built using **penalized B splines**, which allow us to **automatically model non-linear relationships** without having to manually try out many different transformations on each variable.
+<img src=imgs/pygam_basis.png>
+GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each `X_i` on `Y` individually while holding all other predictors constant.
+The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.
+## Citing pyGAM
+Please consider citing pyGAM if it has helped you in your research or work:
+Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. [DOI: 10.5281/zenodo.1208723](http://doi.org/10.5281/zenodo.1208723)
+BibTex:
+```
+@misc{daniel\_serven\_2018_1208723,
+ author = {Daniel Servén and
+ Charlie Brummitt},
+ title = {pyGAM: Generalized Additive Models in Python},
+ month = mar,
+ year = 2018,
+ doi = {10.5281/zenodo.1208723},
+ url = {https://doi.org/10.5281/zenodo.1208723}
+}
+```
+## References
+1. Simon N. Wood, 2006
+Generalized Additive Models: an introduction with R
+0. Hastie, Tibshirani, Friedman
+The Elements of Statistical Learning
+http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
+0. James, Witten, Hastie and Tibshirani
+An Introduction to Statistical Learning
+http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
+0. Paul Eilers & Brian Marx, 1996
+Flexible Smoothing with B-splines and Penalties
+http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf
+0. Kim Larsen, 2015
+GAM: The Predictive Modeling Silver Bullet
+http://multithreaded.stitchfix.com/assets/files/gam.pdf
+0. Deva Ramanan, 2008
+UCI Machine Learning: Notes on IRLS
+http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf
+0. Paul Eilers & Brian Marx, 2015
+International Biometric Society: A Crash Course on P-splines
+http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf
+0. Keiding, Niels, 1991
+Age-specific incidence and prevalence: a statistical perspective
+<!---http://www.cs.princeton.edu/courses/archive/fall11/cos323/notes/cos323_f11_lecture09_svd.pdf--->
+<!---http://www.stats.uwo.ca/faculty/braun/ss3859/notes/Chapter4/ch4.pdf--->
+<!---http://www.stat.berkeley.edu/~census/mlesan.pdf--->
+<!---http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node17.html---> <!--- this helped me get spline gradients--->
+<!---https://scikit-sparse.readthedocs.io/en/latest/overview.html#developers--->
+<!---https://vincentarelbundock.github.io/Rdatasets/datasets.html---> <!--- R Datasets!--->
+
+%prep
+%autosetup -n pygam-0.9.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pygam -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.0-1
+- Package Spec generated