summaryrefslogtreecommitdiff
path: root/python-pyglmnet.spec
blob: 9c1fe6256edf845767a16577e6b2659078e515f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
%global _empty_manifest_terminate_build 0
Name:		python-pyglmnet
Version:	1.1
Release:	1
Summary:	Elastic-net regularized generalized linear models.
License:	MIT
URL:		http://glm-tools.github.io/pyglmnet/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b3/b4/862550f7a6289752abd9c5ceb534259530c57a930371485c0704944ec1d4/pyglmnet-1.1.tar.gz
BuildArch:	noarch


%description
A python implementation of elastic-net regularized generalized linear models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|License| |Travis| |Codecov| |Circle| |Gitter| |DOI|
`[Documentation (stable version)]`_ `[Documentation (development version)]`_
`Generalized linear
models <https://en.wikipedia.org/wiki/Generalized_linear_model>`__ are
well-established tools for regression and classification and are widely
applied across the sciences, economics, business, and finance. They are
uniquely identifiable due to their convex loss and easy to interpret due
to their point-wise non-linearities and well-defined noise models.
In the era of exploratory data analyses with a large number of predictor
variables, it is important to regularize. Regularization prevents
overfitting by penalizing the negative log likelihood and can be used to
articulate prior knowledge about the parameters in a structured form.
Despite the attractiveness of regularized GLMs, the available tools in
the Python data science eco-system are highly fragmented. More
specifically,
-  `statsmodels <http://statsmodels.sourceforge.net/devel/glm.html>`__
   provides a wide range of link functions but no regularization.
-  `scikit-learn <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html>`__
   provides elastic net regularization but only for linear models.
-  `lightning <https://github.com/scikit-learn-contrib/lightning>`__
   provides elastic net and group lasso regularization, but only for
   linear and logistic regression.
**Pyglmnet** is a response to this fragmentation. It runs on Python 3.5+,
and here are some of the highlights.
-  Pyglmnet provides a wide range of noise models (and paired canonical
   link functions): ``'gaussian'``, ``'binomial'``, ``'probit'``,
   ``'gamma'``, '``poisson``', and ``'softplus'``.
-  It supports a wide range of regularizers: ridge, lasso, elastic net,
   `group
   lasso <https://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning#Group_lasso>`__,
   and `Tikhonov
   regularization <https://en.wikipedia.org/wiki/Tikhonov_regularization>`__.
-  Pyglmnet's API is designed to be compatible with scikit-learn, so you
   can deploy ``Pipeline`` tools such as ``GridSearchCV()`` and
   ``cross_val_score()``.
-  We follow the same approach and notations as in `Friedman, J.,
   Hastie, T., & Tibshirani, R.
   (2010) <https://core.ac.uk/download/files/153/6287975.pdf>`__ and the
   accompanying widely popular `R
   package <https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html>`__.
-  We have implemented a cyclical coordinate descent optimizer with
   Newton update, active sets, update caching, and warm restarts. This
   optimization approach is identical to the one used in R package.
-  A number of Python wrappers exist for the R glmnet package (e.g.
   `here <https://github.com/civisanalytics/python-glmnet>`__ and
   `here <https://github.com/dwf/glmnet-python>`__) but in contrast to
   these, Pyglmnet is a pure python implementation. Therefore, it is
   easy to modify and introduce additional noise models and regularizers
   in the future.
Installation
~~~~~~~~~~~~
Install the stable PyPI version with ``pip``
    $ pip install pyglmnet
For the bleeding edge development version:
Clone the repository.
    $ pip install https://api.github.com/repos/glm-tools/pyglmnet/zipball/master
Getting Started
~~~~~~~~~~~~~~~
Here is an example on how to use the ``GLM`` estimator.
   import numpy as np
   import scipy.sparse as sps
   from pyglmnet import GLM, simulate_glm
   n_samples, n_features = 1000, 100
   distr = 'poisson'
   # sample a sparse model
   beta0 = np.random.rand()
   beta = np.random.random(n_features)
   beta[beta < 0.9] = 0
   # simulate data
   Xtrain = np.random.normal(0.0, 1.0, [n_samples, n_features])
   ytrain = simulate_glm('poisson', beta0, beta, Xtrain)
   Xtest = np.random.normal(0.0, 1.0, [n_samples, n_features])
   ytest = simulate_glm('poisson', beta0, beta, Xtest)
   # create an instance of the GLM class
   glm = GLM(distr='poisson', score_metric='deviance')
   # fit the model on the training data
   glm.fit(Xtrain, ytrain)
   # predict using fitted model on the test data
   yhat = glm.predict(Xtest)
   # score the model on test data
   deviance = glm.score(Xtest, ytest)
`More pyglmnet examples and use
cases <http://glm-tools.github.io/pyglmnet/auto_examples/index.html>`__.
Tutorial
~~~~~~~~
Here is an `extensive
tutorial <http://glm-tools.github.io/pyglmnet/tutorial.html>`__ on GLMs,
optimization and pseudo-code.
Here are
`slides <https://pavanramkumar.github.io/pydata-chicago-2016>`__ from a
talk at `PyData Chicago
2016 <http://pydata.org/chicago2016/schedule/presentation/15/>`__,
corresponding `tutorial
notebooks <http://github.com/pavanramkumar/pydata-chicago-2016>`__ and a
`video <https://www.youtube.com/watch?v=zXec96KD1uA>`__.
How to contribute?
~~~~~~~~~~~~~~~~~~
We welcome pull requests. Please see our `developer documentation
page <http://glm-tools.github.io/pyglmnet/developers.html>`__ for more
details.
Acknowledgments
~~~~~~~~~~~~~~~
-  `Konrad Kording <http://kordinglab.com>`__ for funding and support
-  `Sara
   Solla <http://www.physics.northwestern.edu/people/joint-faculty/sara-solla.html>`__
   for masterful GLM lectures
License
~~~~~~~
MIT License Copyright (c) 2016-2019 Pavan Ramkumar

%package -n python3-pyglmnet
Summary:	Elastic-net regularized generalized linear models.
Provides:	python-pyglmnet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pyglmnet
A python implementation of elastic-net regularized generalized linear models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|License| |Travis| |Codecov| |Circle| |Gitter| |DOI|
`[Documentation (stable version)]`_ `[Documentation (development version)]`_
`Generalized linear
models <https://en.wikipedia.org/wiki/Generalized_linear_model>`__ are
well-established tools for regression and classification and are widely
applied across the sciences, economics, business, and finance. They are
uniquely identifiable due to their convex loss and easy to interpret due
to their point-wise non-linearities and well-defined noise models.
In the era of exploratory data analyses with a large number of predictor
variables, it is important to regularize. Regularization prevents
overfitting by penalizing the negative log likelihood and can be used to
articulate prior knowledge about the parameters in a structured form.
Despite the attractiveness of regularized GLMs, the available tools in
the Python data science eco-system are highly fragmented. More
specifically,
-  `statsmodels <http://statsmodels.sourceforge.net/devel/glm.html>`__
   provides a wide range of link functions but no regularization.
-  `scikit-learn <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html>`__
   provides elastic net regularization but only for linear models.
-  `lightning <https://github.com/scikit-learn-contrib/lightning>`__
   provides elastic net and group lasso regularization, but only for
   linear and logistic regression.
**Pyglmnet** is a response to this fragmentation. It runs on Python 3.5+,
and here are some of the highlights.
-  Pyglmnet provides a wide range of noise models (and paired canonical
   link functions): ``'gaussian'``, ``'binomial'``, ``'probit'``,
   ``'gamma'``, '``poisson``', and ``'softplus'``.
-  It supports a wide range of regularizers: ridge, lasso, elastic net,
   `group
   lasso <https://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning#Group_lasso>`__,
   and `Tikhonov
   regularization <https://en.wikipedia.org/wiki/Tikhonov_regularization>`__.
-  Pyglmnet's API is designed to be compatible with scikit-learn, so you
   can deploy ``Pipeline`` tools such as ``GridSearchCV()`` and
   ``cross_val_score()``.
-  We follow the same approach and notations as in `Friedman, J.,
   Hastie, T., & Tibshirani, R.
   (2010) <https://core.ac.uk/download/files/153/6287975.pdf>`__ and the
   accompanying widely popular `R
   package <https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html>`__.
-  We have implemented a cyclical coordinate descent optimizer with
   Newton update, active sets, update caching, and warm restarts. This
   optimization approach is identical to the one used in R package.
-  A number of Python wrappers exist for the R glmnet package (e.g.
   `here <https://github.com/civisanalytics/python-glmnet>`__ and
   `here <https://github.com/dwf/glmnet-python>`__) but in contrast to
   these, Pyglmnet is a pure python implementation. Therefore, it is
   easy to modify and introduce additional noise models and regularizers
   in the future.
Installation
~~~~~~~~~~~~
Install the stable PyPI version with ``pip``
    $ pip install pyglmnet
For the bleeding edge development version:
Clone the repository.
    $ pip install https://api.github.com/repos/glm-tools/pyglmnet/zipball/master
Getting Started
~~~~~~~~~~~~~~~
Here is an example on how to use the ``GLM`` estimator.
   import numpy as np
   import scipy.sparse as sps
   from pyglmnet import GLM, simulate_glm
   n_samples, n_features = 1000, 100
   distr = 'poisson'
   # sample a sparse model
   beta0 = np.random.rand()
   beta = np.random.random(n_features)
   beta[beta < 0.9] = 0
   # simulate data
   Xtrain = np.random.normal(0.0, 1.0, [n_samples, n_features])
   ytrain = simulate_glm('poisson', beta0, beta, Xtrain)
   Xtest = np.random.normal(0.0, 1.0, [n_samples, n_features])
   ytest = simulate_glm('poisson', beta0, beta, Xtest)
   # create an instance of the GLM class
   glm = GLM(distr='poisson', score_metric='deviance')
   # fit the model on the training data
   glm.fit(Xtrain, ytrain)
   # predict using fitted model on the test data
   yhat = glm.predict(Xtest)
   # score the model on test data
   deviance = glm.score(Xtest, ytest)
`More pyglmnet examples and use
cases <http://glm-tools.github.io/pyglmnet/auto_examples/index.html>`__.
Tutorial
~~~~~~~~
Here is an `extensive
tutorial <http://glm-tools.github.io/pyglmnet/tutorial.html>`__ on GLMs,
optimization and pseudo-code.
Here are
`slides <https://pavanramkumar.github.io/pydata-chicago-2016>`__ from a
talk at `PyData Chicago
2016 <http://pydata.org/chicago2016/schedule/presentation/15/>`__,
corresponding `tutorial
notebooks <http://github.com/pavanramkumar/pydata-chicago-2016>`__ and a
`video <https://www.youtube.com/watch?v=zXec96KD1uA>`__.
How to contribute?
~~~~~~~~~~~~~~~~~~
We welcome pull requests. Please see our `developer documentation
page <http://glm-tools.github.io/pyglmnet/developers.html>`__ for more
details.
Acknowledgments
~~~~~~~~~~~~~~~
-  `Konrad Kording <http://kordinglab.com>`__ for funding and support
-  `Sara
   Solla <http://www.physics.northwestern.edu/people/joint-faculty/sara-solla.html>`__
   for masterful GLM lectures
License
~~~~~~~
MIT License Copyright (c) 2016-2019 Pavan Ramkumar

%package help
Summary:	Development documents and examples for pyglmnet
Provides:	python3-pyglmnet-doc
%description help
A python implementation of elastic-net regularized generalized linear models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|License| |Travis| |Codecov| |Circle| |Gitter| |DOI|
`[Documentation (stable version)]`_ `[Documentation (development version)]`_
`Generalized linear
models <https://en.wikipedia.org/wiki/Generalized_linear_model>`__ are
well-established tools for regression and classification and are widely
applied across the sciences, economics, business, and finance. They are
uniquely identifiable due to their convex loss and easy to interpret due
to their point-wise non-linearities and well-defined noise models.
In the era of exploratory data analyses with a large number of predictor
variables, it is important to regularize. Regularization prevents
overfitting by penalizing the negative log likelihood and can be used to
articulate prior knowledge about the parameters in a structured form.
Despite the attractiveness of regularized GLMs, the available tools in
the Python data science eco-system are highly fragmented. More
specifically,
-  `statsmodels <http://statsmodels.sourceforge.net/devel/glm.html>`__
   provides a wide range of link functions but no regularization.
-  `scikit-learn <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html>`__
   provides elastic net regularization but only for linear models.
-  `lightning <https://github.com/scikit-learn-contrib/lightning>`__
   provides elastic net and group lasso regularization, but only for
   linear and logistic regression.
**Pyglmnet** is a response to this fragmentation. It runs on Python 3.5+,
and here are some of the highlights.
-  Pyglmnet provides a wide range of noise models (and paired canonical
   link functions): ``'gaussian'``, ``'binomial'``, ``'probit'``,
   ``'gamma'``, '``poisson``', and ``'softplus'``.
-  It supports a wide range of regularizers: ridge, lasso, elastic net,
   `group
   lasso <https://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning#Group_lasso>`__,
   and `Tikhonov
   regularization <https://en.wikipedia.org/wiki/Tikhonov_regularization>`__.
-  Pyglmnet's API is designed to be compatible with scikit-learn, so you
   can deploy ``Pipeline`` tools such as ``GridSearchCV()`` and
   ``cross_val_score()``.
-  We follow the same approach and notations as in `Friedman, J.,
   Hastie, T., & Tibshirani, R.
   (2010) <https://core.ac.uk/download/files/153/6287975.pdf>`__ and the
   accompanying widely popular `R
   package <https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html>`__.
-  We have implemented a cyclical coordinate descent optimizer with
   Newton update, active sets, update caching, and warm restarts. This
   optimization approach is identical to the one used in R package.
-  A number of Python wrappers exist for the R glmnet package (e.g.
   `here <https://github.com/civisanalytics/python-glmnet>`__ and
   `here <https://github.com/dwf/glmnet-python>`__) but in contrast to
   these, Pyglmnet is a pure python implementation. Therefore, it is
   easy to modify and introduce additional noise models and regularizers
   in the future.
Installation
~~~~~~~~~~~~
Install the stable PyPI version with ``pip``
    $ pip install pyglmnet
For the bleeding edge development version:
Clone the repository.
    $ pip install https://api.github.com/repos/glm-tools/pyglmnet/zipball/master
Getting Started
~~~~~~~~~~~~~~~
Here is an example on how to use the ``GLM`` estimator.
   import numpy as np
   import scipy.sparse as sps
   from pyglmnet import GLM, simulate_glm
   n_samples, n_features = 1000, 100
   distr = 'poisson'
   # sample a sparse model
   beta0 = np.random.rand()
   beta = np.random.random(n_features)
   beta[beta < 0.9] = 0
   # simulate data
   Xtrain = np.random.normal(0.0, 1.0, [n_samples, n_features])
   ytrain = simulate_glm('poisson', beta0, beta, Xtrain)
   Xtest = np.random.normal(0.0, 1.0, [n_samples, n_features])
   ytest = simulate_glm('poisson', beta0, beta, Xtest)
   # create an instance of the GLM class
   glm = GLM(distr='poisson', score_metric='deviance')
   # fit the model on the training data
   glm.fit(Xtrain, ytrain)
   # predict using fitted model on the test data
   yhat = glm.predict(Xtest)
   # score the model on test data
   deviance = glm.score(Xtest, ytest)
`More pyglmnet examples and use
cases <http://glm-tools.github.io/pyglmnet/auto_examples/index.html>`__.
Tutorial
~~~~~~~~
Here is an `extensive
tutorial <http://glm-tools.github.io/pyglmnet/tutorial.html>`__ on GLMs,
optimization and pseudo-code.
Here are
`slides <https://pavanramkumar.github.io/pydata-chicago-2016>`__ from a
talk at `PyData Chicago
2016 <http://pydata.org/chicago2016/schedule/presentation/15/>`__,
corresponding `tutorial
notebooks <http://github.com/pavanramkumar/pydata-chicago-2016>`__ and a
`video <https://www.youtube.com/watch?v=zXec96KD1uA>`__.
How to contribute?
~~~~~~~~~~~~~~~~~~
We welcome pull requests. Please see our `developer documentation
page <http://glm-tools.github.io/pyglmnet/developers.html>`__ for more
details.
Acknowledgments
~~~~~~~~~~~~~~~
-  `Konrad Kording <http://kordinglab.com>`__ for funding and support
-  `Sara
   Solla <http://www.physics.northwestern.edu/people/joint-faculty/sara-solla.html>`__
   for masterful GLM lectures
License
~~~~~~~
MIT License Copyright (c) 2016-2019 Pavan Ramkumar

%prep
%autosetup -n pyglmnet-1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pyglmnet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1-1
- Package Spec generated