summaryrefslogtreecommitdiff
path: root/python-pygyver.spec
blob: 0d6e35bb572d2c220f0998d4a9b967adb6723c74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
%global _empty_manifest_terminate_build 0
Name:		python-pygyver
Version:	0.1.1.42
Release:	1
Summary:	Data engineering & Data science Pipeline Framework
License:	MIT License
URL:		https://github.com/madedotcom/pygyver
Source0:	https://mirrors.aliyun.com/pypi/web/packages/e6/c0/cb05b7eef1faeda980138bf515390099bff1ac59fbc9c8e1a819da00d2f1/pygyver-0.1.1.42.tar.gz
BuildArch:	noarch

Requires:	python3-boto3
Requires:	python3-codecov
Requires:	python3-facebook-business
Requires:	python3-google-cloud-bigquery
Requires:	python3-google-cloud-bigquery-datatransfer
Requires:	python3-google-cloud-storage
Requires:	python3-gspread
Requires:	python3-gspread-dataframe
Requires:	python3-moto
Requires:	python3-nltk
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-pandas-gbq
Requires:	python3-pg8000
Requires:	python3-pyarrow
Requires:	python3-pymysql
Requires:	python3-pytest
Requires:	python3-PyYAML
Requires:	python3-slack-sdk
Requires:	python3-sqlalchemy
Requires:	python3-tox
Requires:	python3-versioneer
Requires:	python3-wheel

%description
# PyGyver

> PyGyver is a user-friendly python package for data integration and manipulation.

> Named after MacGyver, title character in the TV series MacGyver, and Python, the main language used in the repository.

## Installation

### PyPi

PyGyver is available on [PyPi](https://pypi.org/project/pygyver/).

```python 
pip install pygyver
```

### Setup

Most APIs requires access token files to authentificate and perform tasks such as creating or deleting objects. Those files need to be generated prior to using `pygyver` and stored in the environment you are executing your code against. The package make use of environment variables, and some of the below might need be supplied in your environment:

```
# Access token path
GOOGLE_APPLICATION_CREDENTIALS=path_to_google_access_token.json
FACEBOOK_APPLICATION_CREDENTIALS=path_to_facebook_access_token.json

# Default values
BIGQUERY_PROJECT=your-gcs-project
GCS_PROJECT=your-gcs-project
GCS_BUCKET=your-gcs-bucket

# Optional
PROJECT_ROOT=path_to_where_your_code_lives
```

## Modules

PyGyver is structured around several modules available in the `etl` folder. Here is a summary table of those modules:

| Module name | Descrition | Documentation |
| ------------- |-------------|-------------|
| `dw` | Perform task against the Google Cloud BigQuery API | [dw.md](docs/dw.md) |
| `facebook` | Perform task against the Facebook Marketing API | [facebook.md](docs/facebook.md) |
| `gooddata` | Perform task against the GoodData API | - |
| `gs` | Perform task against the Google Sheet API | - |
| `lib` | Store utilities used by other modules | - |
| `pipeline` | Utility to build data pipelines via YAML definition | [pipeline.md](docs/pipeline.md) |
| `prep` | Data transformation - ML pipelines | - |
| `storage` | Perform task against the AWS S3 and Google Cloud Storage API | [storage.md](docs/storage.md) |
| `toolkit` | Sets of tools for data manipulation | - |

In order to load `BigQueryExecutor` from the `dw` module, you can run:

```
from pygyver.etl.dw import BigQueryExecutor
```

## Contributing

> To get started...

### Step 1

- 👯 Clone this repo to your local machine using `git@github.com:madedotcom/pygyver.git`

### Step 2

- **HACK AWAY!** 🔨🔨🔨

The team follows TDD to develop new features on `pygyver`.
Tests can be found in `pygyver/tests`.

### Step 3

- 🔃 Create a new pull request and request review from team members. Where applicable, a test should be added with the code change.

## FAQ

- **How to release a new version to PyPi?**
    1. Merge your changes to `master` branch
    2. Create a new release using `https://github.com/madedotcom/pygyver/releases`


%package -n python3-pygyver
Summary:	Data engineering & Data science Pipeline Framework
Provides:	python-pygyver
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pygyver
# PyGyver

> PyGyver is a user-friendly python package for data integration and manipulation.

> Named after MacGyver, title character in the TV series MacGyver, and Python, the main language used in the repository.

## Installation

### PyPi

PyGyver is available on [PyPi](https://pypi.org/project/pygyver/).

```python 
pip install pygyver
```

### Setup

Most APIs requires access token files to authentificate and perform tasks such as creating or deleting objects. Those files need to be generated prior to using `pygyver` and stored in the environment you are executing your code against. The package make use of environment variables, and some of the below might need be supplied in your environment:

```
# Access token path
GOOGLE_APPLICATION_CREDENTIALS=path_to_google_access_token.json
FACEBOOK_APPLICATION_CREDENTIALS=path_to_facebook_access_token.json

# Default values
BIGQUERY_PROJECT=your-gcs-project
GCS_PROJECT=your-gcs-project
GCS_BUCKET=your-gcs-bucket

# Optional
PROJECT_ROOT=path_to_where_your_code_lives
```

## Modules

PyGyver is structured around several modules available in the `etl` folder. Here is a summary table of those modules:

| Module name | Descrition | Documentation |
| ------------- |-------------|-------------|
| `dw` | Perform task against the Google Cloud BigQuery API | [dw.md](docs/dw.md) |
| `facebook` | Perform task against the Facebook Marketing API | [facebook.md](docs/facebook.md) |
| `gooddata` | Perform task against the GoodData API | - |
| `gs` | Perform task against the Google Sheet API | - |
| `lib` | Store utilities used by other modules | - |
| `pipeline` | Utility to build data pipelines via YAML definition | [pipeline.md](docs/pipeline.md) |
| `prep` | Data transformation - ML pipelines | - |
| `storage` | Perform task against the AWS S3 and Google Cloud Storage API | [storage.md](docs/storage.md) |
| `toolkit` | Sets of tools for data manipulation | - |

In order to load `BigQueryExecutor` from the `dw` module, you can run:

```
from pygyver.etl.dw import BigQueryExecutor
```

## Contributing

> To get started...

### Step 1

- 👯 Clone this repo to your local machine using `git@github.com:madedotcom/pygyver.git`

### Step 2

- **HACK AWAY!** 🔨🔨🔨

The team follows TDD to develop new features on `pygyver`.
Tests can be found in `pygyver/tests`.

### Step 3

- 🔃 Create a new pull request and request review from team members. Where applicable, a test should be added with the code change.

## FAQ

- **How to release a new version to PyPi?**
    1. Merge your changes to `master` branch
    2. Create a new release using `https://github.com/madedotcom/pygyver/releases`


%package help
Summary:	Development documents and examples for pygyver
Provides:	python3-pygyver-doc
%description help
# PyGyver

> PyGyver is a user-friendly python package for data integration and manipulation.

> Named after MacGyver, title character in the TV series MacGyver, and Python, the main language used in the repository.

## Installation

### PyPi

PyGyver is available on [PyPi](https://pypi.org/project/pygyver/).

```python 
pip install pygyver
```

### Setup

Most APIs requires access token files to authentificate and perform tasks such as creating or deleting objects. Those files need to be generated prior to using `pygyver` and stored in the environment you are executing your code against. The package make use of environment variables, and some of the below might need be supplied in your environment:

```
# Access token path
GOOGLE_APPLICATION_CREDENTIALS=path_to_google_access_token.json
FACEBOOK_APPLICATION_CREDENTIALS=path_to_facebook_access_token.json

# Default values
BIGQUERY_PROJECT=your-gcs-project
GCS_PROJECT=your-gcs-project
GCS_BUCKET=your-gcs-bucket

# Optional
PROJECT_ROOT=path_to_where_your_code_lives
```

## Modules

PyGyver is structured around several modules available in the `etl` folder. Here is a summary table of those modules:

| Module name | Descrition | Documentation |
| ------------- |-------------|-------------|
| `dw` | Perform task against the Google Cloud BigQuery API | [dw.md](docs/dw.md) |
| `facebook` | Perform task against the Facebook Marketing API | [facebook.md](docs/facebook.md) |
| `gooddata` | Perform task against the GoodData API | - |
| `gs` | Perform task against the Google Sheet API | - |
| `lib` | Store utilities used by other modules | - |
| `pipeline` | Utility to build data pipelines via YAML definition | [pipeline.md](docs/pipeline.md) |
| `prep` | Data transformation - ML pipelines | - |
| `storage` | Perform task against the AWS S3 and Google Cloud Storage API | [storage.md](docs/storage.md) |
| `toolkit` | Sets of tools for data manipulation | - |

In order to load `BigQueryExecutor` from the `dw` module, you can run:

```
from pygyver.etl.dw import BigQueryExecutor
```

## Contributing

> To get started...

### Step 1

- 👯 Clone this repo to your local machine using `git@github.com:madedotcom/pygyver.git`

### Step 2

- **HACK AWAY!** 🔨🔨🔨

The team follows TDD to develop new features on `pygyver`.
Tests can be found in `pygyver/tests`.

### Step 3

- 🔃 Create a new pull request and request review from team members. Where applicable, a test should be added with the code change.

## FAQ

- **How to release a new version to PyPi?**
    1. Merge your changes to `master` branch
    2. Create a new release using `https://github.com/madedotcom/pygyver/releases`


%prep
%autosetup -n pygyver-0.1.1.42

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pygyver -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.1.42-1
- Package Spec generated