1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
%global _empty_manifest_terminate_build 0
Name: python-PyKrige
Version: 1.7.0
Release: 1
Summary: Kriging Toolkit for Python.
License: BSD-3-Clause
URL: https://github.com/GeoStat-Framework/PyKrige
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2c/d4/712e81c60423a036442acd11f30590c101b579de5e3531633b93b84b0112/PyKrige-1.7.0.tar.gz
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-gstools
Requires: python3-scipy
Requires: python3-pillow
Requires: python3-scikit-learn
Requires: python3-m2r2
Requires: python3-matplotlib
Requires: python3-numpydoc
Requires: python3-sphinx
Requires: python3-sphinx-gallery
Requires: python3-sphinx-rtd-theme
Requires: python3-matplotlib
Requires: python3-scikit-learn
Requires: python3-pytest-cov
Requires: python3-scikit-learn
Requires: python3-gstools
%description
# PyKrige
[](https://doi.org/10.5281/zenodo.3738604)
[](https://badge.fury.io/py/PyKrige)
[](https://anaconda.org/conda-forge/pykrige)
[](https://github.com/GeoStat-Framework/PyKrige/actions)
[](https://coveralls.io/github/GeoStat-Framework/PyKrige?branch=main)
[](http://pykrige.readthedocs.io/en/stable/?badge=stable)
[](https://github.com/psf/black)
<p align="center">
<img src="https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/docs/source/pics/PyKrige_250.png" alt="PyKrige-LOGO" width="251px"/>
</p>
Kriging Toolkit for Python.
## Purpose
The code supports 2D and 3D ordinary and universal kriging. Standard
variogram models (linear, power, spherical, gaussian, exponential) are
built in, but custom variogram models can also be used. The 2D universal
kriging code currently supports regional-linear, point-logarithmic, and
external drift terms, while the 3D universal kriging code supports a
regional-linear drift term in all three spatial dimensions. Both
universal kriging classes also support generic 'specified' and
'functional' drift capabilities. With the 'specified' drift capability,
the user may manually specify the values of the drift(s) at each data
point and all grid points. With the 'functional' drift capability, the
user may provide callable function(s) of the spatial coordinates that
define the drift(s). The package includes a module that contains
functions that should be useful in working with ASCII grid files (`\*.asc`).
See the documentation at <http://pykrige.readthedocs.io/> for more
details and examples.
## Installation
PyKrige requires Python 3.5+ as well as numpy, scipy. It can be
installed from PyPi with,
``` bash
pip install pykrige
```
scikit-learn is an optional dependency needed for parameter tuning and
regression kriging. matplotlib is an optional dependency needed for
plotting.
If you use conda, PyKrige can be installed from the <span
class="title-ref">conda-forge</span> channel with,
``` bash
conda install -c conda-forge pykrige
```
## Features
### Kriging algorithms
- `OrdinaryKriging`: 2D ordinary kriging with estimated mean
- `UniversalKriging`: 2D universal kriging providing drift terms
- `OrdinaryKriging3D`: 3D ordinary kriging
- `UniversalKriging3D`: 3D universal kriging
- `RegressionKriging`: An implementation of Regression-Kriging
- `ClassificationKriging`: An implementation of Simplicial Indicator
Kriging
### Wrappers
- `rk.Krige`: A scikit-learn wrapper class for Ordinary and Universal
Kriging
### Tools
- `kriging_tools.write_asc_grid`: Writes gridded data to ASCII grid file (`\*.asc`)
- `kriging_tools.read_asc_grid`: Reads ASCII grid file (`\*.asc`)
- `kriging_tools.write_zmap_grid`: Writes gridded data to zmap file (`\*.zmap`)
- `kriging_tools.read_zmap_grid`: Reads zmap file (`\*.zmap`)
### Kriging Parameters Tuning
A scikit-learn compatible API for parameter tuning by cross-validation
is exposed in
[sklearn.model\_selection.GridSearchCV](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html).
See the [Krige
CV](http://pykrige.readthedocs.io/en/latest/examples/08_krige_cv.html#sphx-glr-examples-08-krige-cv-py)
example for a more practical illustration.
### Regression Kriging
[Regression kriging](https://en.wikipedia.org/wiki/Regression-Kriging)
can be performed with
[pykrige.rk.RegressionKriging](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html).
This class takes as parameters a scikit-learn regression model, and
details of either the `OrdinaryKriging` or the `UniversalKriging`
class, and performs a correction step on the ML regression prediction.
A demonstration of the regression kriging is provided in the
[corresponding
example](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html#sphx-glr-examples-07-regression-kriging2d-py).
### Classification Kriging
[Simplifical Indicator
kriging](https://www.sciencedirect.com/science/article/abs/pii/S1002070508600254)
can be performed with
[pykrige.ck.ClassificationKriging](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html).
This class takes as parameters a scikit-learn classification model, and
details of either the `OrdinaryKriging` or the `UniversalKriging` class,
and performs a correction step on the ML classification prediction.
A demonstration of the classification kriging is provided in the
[corresponding
example](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html#sphx-glr-examples-10-classification-kriging2d-py).
## License
PyKrige uses the BSD 3-Clause License.
%package -n python3-PyKrige
Summary: Kriging Toolkit for Python.
Provides: python-PyKrige
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-PyKrige
# PyKrige
[](https://doi.org/10.5281/zenodo.3738604)
[](https://badge.fury.io/py/PyKrige)
[](https://anaconda.org/conda-forge/pykrige)
[](https://github.com/GeoStat-Framework/PyKrige/actions)
[](https://coveralls.io/github/GeoStat-Framework/PyKrige?branch=main)
[](http://pykrige.readthedocs.io/en/stable/?badge=stable)
[](https://github.com/psf/black)
<p align="center">
<img src="https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/docs/source/pics/PyKrige_250.png" alt="PyKrige-LOGO" width="251px"/>
</p>
Kriging Toolkit for Python.
## Purpose
The code supports 2D and 3D ordinary and universal kriging. Standard
variogram models (linear, power, spherical, gaussian, exponential) are
built in, but custom variogram models can also be used. The 2D universal
kriging code currently supports regional-linear, point-logarithmic, and
external drift terms, while the 3D universal kriging code supports a
regional-linear drift term in all three spatial dimensions. Both
universal kriging classes also support generic 'specified' and
'functional' drift capabilities. With the 'specified' drift capability,
the user may manually specify the values of the drift(s) at each data
point and all grid points. With the 'functional' drift capability, the
user may provide callable function(s) of the spatial coordinates that
define the drift(s). The package includes a module that contains
functions that should be useful in working with ASCII grid files (`\*.asc`).
See the documentation at <http://pykrige.readthedocs.io/> for more
details and examples.
## Installation
PyKrige requires Python 3.5+ as well as numpy, scipy. It can be
installed from PyPi with,
``` bash
pip install pykrige
```
scikit-learn is an optional dependency needed for parameter tuning and
regression kriging. matplotlib is an optional dependency needed for
plotting.
If you use conda, PyKrige can be installed from the <span
class="title-ref">conda-forge</span> channel with,
``` bash
conda install -c conda-forge pykrige
```
## Features
### Kriging algorithms
- `OrdinaryKriging`: 2D ordinary kriging with estimated mean
- `UniversalKriging`: 2D universal kriging providing drift terms
- `OrdinaryKriging3D`: 3D ordinary kriging
- `UniversalKriging3D`: 3D universal kriging
- `RegressionKriging`: An implementation of Regression-Kriging
- `ClassificationKriging`: An implementation of Simplicial Indicator
Kriging
### Wrappers
- `rk.Krige`: A scikit-learn wrapper class for Ordinary and Universal
Kriging
### Tools
- `kriging_tools.write_asc_grid`: Writes gridded data to ASCII grid file (`\*.asc`)
- `kriging_tools.read_asc_grid`: Reads ASCII grid file (`\*.asc`)
- `kriging_tools.write_zmap_grid`: Writes gridded data to zmap file (`\*.zmap`)
- `kriging_tools.read_zmap_grid`: Reads zmap file (`\*.zmap`)
### Kriging Parameters Tuning
A scikit-learn compatible API for parameter tuning by cross-validation
is exposed in
[sklearn.model\_selection.GridSearchCV](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html).
See the [Krige
CV](http://pykrige.readthedocs.io/en/latest/examples/08_krige_cv.html#sphx-glr-examples-08-krige-cv-py)
example for a more practical illustration.
### Regression Kriging
[Regression kriging](https://en.wikipedia.org/wiki/Regression-Kriging)
can be performed with
[pykrige.rk.RegressionKriging](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html).
This class takes as parameters a scikit-learn regression model, and
details of either the `OrdinaryKriging` or the `UniversalKriging`
class, and performs a correction step on the ML regression prediction.
A demonstration of the regression kriging is provided in the
[corresponding
example](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html#sphx-glr-examples-07-regression-kriging2d-py).
### Classification Kriging
[Simplifical Indicator
kriging](https://www.sciencedirect.com/science/article/abs/pii/S1002070508600254)
can be performed with
[pykrige.ck.ClassificationKriging](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html).
This class takes as parameters a scikit-learn classification model, and
details of either the `OrdinaryKriging` or the `UniversalKriging` class,
and performs a correction step on the ML classification prediction.
A demonstration of the classification kriging is provided in the
[corresponding
example](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html#sphx-glr-examples-10-classification-kriging2d-py).
## License
PyKrige uses the BSD 3-Clause License.
%package help
Summary: Development documents and examples for PyKrige
Provides: python3-PyKrige-doc
%description help
# PyKrige
[](https://doi.org/10.5281/zenodo.3738604)
[](https://badge.fury.io/py/PyKrige)
[](https://anaconda.org/conda-forge/pykrige)
[](https://github.com/GeoStat-Framework/PyKrige/actions)
[](https://coveralls.io/github/GeoStat-Framework/PyKrige?branch=main)
[](http://pykrige.readthedocs.io/en/stable/?badge=stable)
[](https://github.com/psf/black)
<p align="center">
<img src="https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/docs/source/pics/PyKrige_250.png" alt="PyKrige-LOGO" width="251px"/>
</p>
Kriging Toolkit for Python.
## Purpose
The code supports 2D and 3D ordinary and universal kriging. Standard
variogram models (linear, power, spherical, gaussian, exponential) are
built in, but custom variogram models can also be used. The 2D universal
kriging code currently supports regional-linear, point-logarithmic, and
external drift terms, while the 3D universal kriging code supports a
regional-linear drift term in all three spatial dimensions. Both
universal kriging classes also support generic 'specified' and
'functional' drift capabilities. With the 'specified' drift capability,
the user may manually specify the values of the drift(s) at each data
point and all grid points. With the 'functional' drift capability, the
user may provide callable function(s) of the spatial coordinates that
define the drift(s). The package includes a module that contains
functions that should be useful in working with ASCII grid files (`\*.asc`).
See the documentation at <http://pykrige.readthedocs.io/> for more
details and examples.
## Installation
PyKrige requires Python 3.5+ as well as numpy, scipy. It can be
installed from PyPi with,
``` bash
pip install pykrige
```
scikit-learn is an optional dependency needed for parameter tuning and
regression kriging. matplotlib is an optional dependency needed for
plotting.
If you use conda, PyKrige can be installed from the <span
class="title-ref">conda-forge</span> channel with,
``` bash
conda install -c conda-forge pykrige
```
## Features
### Kriging algorithms
- `OrdinaryKriging`: 2D ordinary kriging with estimated mean
- `UniversalKriging`: 2D universal kriging providing drift terms
- `OrdinaryKriging3D`: 3D ordinary kriging
- `UniversalKriging3D`: 3D universal kriging
- `RegressionKriging`: An implementation of Regression-Kriging
- `ClassificationKriging`: An implementation of Simplicial Indicator
Kriging
### Wrappers
- `rk.Krige`: A scikit-learn wrapper class for Ordinary and Universal
Kriging
### Tools
- `kriging_tools.write_asc_grid`: Writes gridded data to ASCII grid file (`\*.asc`)
- `kriging_tools.read_asc_grid`: Reads ASCII grid file (`\*.asc`)
- `kriging_tools.write_zmap_grid`: Writes gridded data to zmap file (`\*.zmap`)
- `kriging_tools.read_zmap_grid`: Reads zmap file (`\*.zmap`)
### Kriging Parameters Tuning
A scikit-learn compatible API for parameter tuning by cross-validation
is exposed in
[sklearn.model\_selection.GridSearchCV](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html).
See the [Krige
CV](http://pykrige.readthedocs.io/en/latest/examples/08_krige_cv.html#sphx-glr-examples-08-krige-cv-py)
example for a more practical illustration.
### Regression Kriging
[Regression kriging](https://en.wikipedia.org/wiki/Regression-Kriging)
can be performed with
[pykrige.rk.RegressionKriging](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html).
This class takes as parameters a scikit-learn regression model, and
details of either the `OrdinaryKriging` or the `UniversalKriging`
class, and performs a correction step on the ML regression prediction.
A demonstration of the regression kriging is provided in the
[corresponding
example](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html#sphx-glr-examples-07-regression-kriging2d-py).
### Classification Kriging
[Simplifical Indicator
kriging](https://www.sciencedirect.com/science/article/abs/pii/S1002070508600254)
can be performed with
[pykrige.ck.ClassificationKriging](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html).
This class takes as parameters a scikit-learn classification model, and
details of either the `OrdinaryKriging` or the `UniversalKriging` class,
and performs a correction step on the ML classification prediction.
A demonstration of the classification kriging is provided in the
[corresponding
example](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html#sphx-glr-examples-10-classification-kriging2d-py).
## License
PyKrige uses the BSD 3-Clause License.
%prep
%autosetup -n PyKrige-1.7.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-PyKrige -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1.7.0-1
- Package Spec generated
|