summaryrefslogtreecommitdiff
path: root/python-pylabel.spec
blob: e3c2985fe6e0a673d49b5e669c09242c26bacb88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
%global _empty_manifest_terminate_build 0
Name:		python-pylabel
Version:	0.1.50
Release:	1
Summary:	Transform, analyze, and visualize computer vision annotations.
License:	MIT
URL:		https://github.com/pylabel-project/pylabel
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/8c/dc/d909bc64b9f3d2400ffe49f370bcf0dd7166ded2866b6f0b7a92c399d867/pylabel-0.1.50.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-bbox-visualizer
Requires:	python3-matplotlib
Requires:	python3-opencv-python
Requires:	python3-scikit-learn
Requires:	python3-jupyter-bbox-widget
Requires:	python3-pyyaml
Requires:	python3-tqdm

%description
# PyLabel 

<a href="https://pypi.org/project/pylabel/">
<img alt="PyPI" src="https://img.shields.io/pypi/v/pylabel?color=gre">&nbsp;&nbsp;
<img src="https://img.shields.io/pypi/dm/pylabel?style=plastic"></a>
&nbsp;&nbsp;

<a href='https://pylabel.readthedocs.io/en/latest/?badge=latest'>
    <img src='https://readthedocs.org/projects/pylabel/badge/?version=latest' alt='Documentation Status' />
</a>
&nbsp;&nbsp;<a href="https://colab.research.google.com/github/pylabel-project/samples/blob/main/coco2voc.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
&nbsp;

<p><p>
PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. It can translate bounding box annotations between different formats. (For example, COCO to YOLO.) And it includes an AI-assisted labeling tool that runs in a Jupyter notebook. 

-	**Translate:** Convert annotation formats with a single line of code: 
    ```
    importer.ImportCoco(path_to_annotations).export.ExportToYoloV5()
    ```
-	**Analyze:** PyLabel stores annotatations in a pandas dataframe so you can easily perform analysis on image datasets. 
-	**Split:** Divide image datasets into train, test, and val with stratification to get consistent class distribution.  <br><img src="https://raw.githubusercontent.com/pylabel-project/datasets_models/main/pylabel_assets/train_test_split.png" width=400>
-  **Label:** PyLabel also includes an image labeling tool that runs in a Jupyter notebook that can annotate images manually or perform automatic labeling using a pre-trained model.<br><br><img src="https://raw.githubusercontent.com/pylabel-project/datasets_models/main/pylabel_assets/pylaber_screenshot.png" width=400>
-	**Visualize:** Render images from your dataset with bounding boxes overlaid so you can confirm the accuracy of the annotations. 


## Tutorial Notebooks
See PyLabel in action in these [sample Jupyter notebooks](https://github.com/pylabel-project/samples/):<br>
- [Convert COCO to YOLO](https://github.com/pylabel-project/samples/blob/main/coco2yolov5.ipynb)
- [Convert COCO to VOC](https://github.com/pylabel-project/samples/blob/main/coco2voc.ipynb)
- [Convert VOC to COCO](https://github.com/pylabel-project/samples/blob/main/voc2coco.ipynb)
- [Convert YOLO to COCO](https://github.com/pylabel-project/samples/blob/main/yolo2coco.ipynb)
- [Convert YOLO to VOC](https://github.com/pylabel-project/samples/blob/main/yolo2voc.ipynb)
- [Import a YOLO YAML File](https://github.com/pylabel-project/samples/blob/main/yolo_with_yaml_importer.ipynb) 
- [Splitting Images Datasets into Train, Test, Val](https://github.com/pylabel-project/samples/blob/main/dataset_splitting.ipynb)
- [Labeling Tool Demo with AI Assisted Labeling](https://github.com/pylabel-project/samples/blob/main/pylabeler.ipynb)

Find more docs at https://pylabel.readthedocs.io. 

## About PyLabel 
PyLabel was developed by Jeremy Fraenkel, Alex Heaton, and Derek Topper as the Capstope project for the Master of Information and Data Science (MIDS) at the UC Berkeley School of Information. If you have any questions or feedback please [create an issue](https://github.com/pylabel-project/pylabel/issues). Please let us know how we can make PyLabel more useful. 
    


%package -n python3-pylabel
Summary:	Transform, analyze, and visualize computer vision annotations.
Provides:	python-pylabel
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pylabel
# PyLabel 

<a href="https://pypi.org/project/pylabel/">
<img alt="PyPI" src="https://img.shields.io/pypi/v/pylabel?color=gre">&nbsp;&nbsp;
<img src="https://img.shields.io/pypi/dm/pylabel?style=plastic"></a>
&nbsp;&nbsp;

<a href='https://pylabel.readthedocs.io/en/latest/?badge=latest'>
    <img src='https://readthedocs.org/projects/pylabel/badge/?version=latest' alt='Documentation Status' />
</a>
&nbsp;&nbsp;<a href="https://colab.research.google.com/github/pylabel-project/samples/blob/main/coco2voc.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
&nbsp;

<p><p>
PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. It can translate bounding box annotations between different formats. (For example, COCO to YOLO.) And it includes an AI-assisted labeling tool that runs in a Jupyter notebook. 

-	**Translate:** Convert annotation formats with a single line of code: 
    ```
    importer.ImportCoco(path_to_annotations).export.ExportToYoloV5()
    ```
-	**Analyze:** PyLabel stores annotatations in a pandas dataframe so you can easily perform analysis on image datasets. 
-	**Split:** Divide image datasets into train, test, and val with stratification to get consistent class distribution.  <br><img src="https://raw.githubusercontent.com/pylabel-project/datasets_models/main/pylabel_assets/train_test_split.png" width=400>
-  **Label:** PyLabel also includes an image labeling tool that runs in a Jupyter notebook that can annotate images manually or perform automatic labeling using a pre-trained model.<br><br><img src="https://raw.githubusercontent.com/pylabel-project/datasets_models/main/pylabel_assets/pylaber_screenshot.png" width=400>
-	**Visualize:** Render images from your dataset with bounding boxes overlaid so you can confirm the accuracy of the annotations. 


## Tutorial Notebooks
See PyLabel in action in these [sample Jupyter notebooks](https://github.com/pylabel-project/samples/):<br>
- [Convert COCO to YOLO](https://github.com/pylabel-project/samples/blob/main/coco2yolov5.ipynb)
- [Convert COCO to VOC](https://github.com/pylabel-project/samples/blob/main/coco2voc.ipynb)
- [Convert VOC to COCO](https://github.com/pylabel-project/samples/blob/main/voc2coco.ipynb)
- [Convert YOLO to COCO](https://github.com/pylabel-project/samples/blob/main/yolo2coco.ipynb)
- [Convert YOLO to VOC](https://github.com/pylabel-project/samples/blob/main/yolo2voc.ipynb)
- [Import a YOLO YAML File](https://github.com/pylabel-project/samples/blob/main/yolo_with_yaml_importer.ipynb) 
- [Splitting Images Datasets into Train, Test, Val](https://github.com/pylabel-project/samples/blob/main/dataset_splitting.ipynb)
- [Labeling Tool Demo with AI Assisted Labeling](https://github.com/pylabel-project/samples/blob/main/pylabeler.ipynb)

Find more docs at https://pylabel.readthedocs.io. 

## About PyLabel 
PyLabel was developed by Jeremy Fraenkel, Alex Heaton, and Derek Topper as the Capstope project for the Master of Information and Data Science (MIDS) at the UC Berkeley School of Information. If you have any questions or feedback please [create an issue](https://github.com/pylabel-project/pylabel/issues). Please let us know how we can make PyLabel more useful. 
    


%package help
Summary:	Development documents and examples for pylabel
Provides:	python3-pylabel-doc
%description help
# PyLabel 

<a href="https://pypi.org/project/pylabel/">
<img alt="PyPI" src="https://img.shields.io/pypi/v/pylabel?color=gre">&nbsp;&nbsp;
<img src="https://img.shields.io/pypi/dm/pylabel?style=plastic"></a>
&nbsp;&nbsp;

<a href='https://pylabel.readthedocs.io/en/latest/?badge=latest'>
    <img src='https://readthedocs.org/projects/pylabel/badge/?version=latest' alt='Documentation Status' />
</a>
&nbsp;&nbsp;<a href="https://colab.research.google.com/github/pylabel-project/samples/blob/main/coco2voc.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
&nbsp;

<p><p>
PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. It can translate bounding box annotations between different formats. (For example, COCO to YOLO.) And it includes an AI-assisted labeling tool that runs in a Jupyter notebook. 

-	**Translate:** Convert annotation formats with a single line of code: 
    ```
    importer.ImportCoco(path_to_annotations).export.ExportToYoloV5()
    ```
-	**Analyze:** PyLabel stores annotatations in a pandas dataframe so you can easily perform analysis on image datasets. 
-	**Split:** Divide image datasets into train, test, and val with stratification to get consistent class distribution.  <br><img src="https://raw.githubusercontent.com/pylabel-project/datasets_models/main/pylabel_assets/train_test_split.png" width=400>
-  **Label:** PyLabel also includes an image labeling tool that runs in a Jupyter notebook that can annotate images manually or perform automatic labeling using a pre-trained model.<br><br><img src="https://raw.githubusercontent.com/pylabel-project/datasets_models/main/pylabel_assets/pylaber_screenshot.png" width=400>
-	**Visualize:** Render images from your dataset with bounding boxes overlaid so you can confirm the accuracy of the annotations. 


## Tutorial Notebooks
See PyLabel in action in these [sample Jupyter notebooks](https://github.com/pylabel-project/samples/):<br>
- [Convert COCO to YOLO](https://github.com/pylabel-project/samples/blob/main/coco2yolov5.ipynb)
- [Convert COCO to VOC](https://github.com/pylabel-project/samples/blob/main/coco2voc.ipynb)
- [Convert VOC to COCO](https://github.com/pylabel-project/samples/blob/main/voc2coco.ipynb)
- [Convert YOLO to COCO](https://github.com/pylabel-project/samples/blob/main/yolo2coco.ipynb)
- [Convert YOLO to VOC](https://github.com/pylabel-project/samples/blob/main/yolo2voc.ipynb)
- [Import a YOLO YAML File](https://github.com/pylabel-project/samples/blob/main/yolo_with_yaml_importer.ipynb) 
- [Splitting Images Datasets into Train, Test, Val](https://github.com/pylabel-project/samples/blob/main/dataset_splitting.ipynb)
- [Labeling Tool Demo with AI Assisted Labeling](https://github.com/pylabel-project/samples/blob/main/pylabeler.ipynb)

Find more docs at https://pylabel.readthedocs.io. 

## About PyLabel 
PyLabel was developed by Jeremy Fraenkel, Alex Heaton, and Derek Topper as the Capstope project for the Master of Information and Data Science (MIDS) at the UC Berkeley School of Information. If you have any questions or feedback please [create an issue](https://github.com/pylabel-project/pylabel/issues). Please let us know how we can make PyLabel more useful. 
    


%prep
%autosetup -n pylabel-0.1.50

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pylabel -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.50-1
- Package Spec generated