1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
%global _empty_manifest_terminate_build 0
Name: python-pylinac
Version: 3.11.0
Release: 1
Summary: A toolkit for performing TG-142 QA-related tasks on a linear accelerator
License: MIT
URL: https://github.com/jrkerns/pylinac
Source0: https://mirrors.aliyun.com/pypi/web/packages/da/71/5fc5748c5f9d428d2283dd9268aad1a15b2dc16fb827a48a785e2856b359/pylinac-3.11.0.tar.gz
BuildArch: noarch
Requires: python3-scikit-image
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-tqdm
Requires: python3-Pillow
Requires: python3-argue
Requires: python3-py-linq
Requires: python3-cached-property
Requires: python3-reportlab
Requires: python3-pydicom
Requires: python3-matplotlib
Requires: python3-tabulate
%description
|
Pylinac provides TG-142 quality assurance (QA) tools to Python programmers in the field of
therapy and diagnostic medical physics.
Pylinac contains high-level modules for automatically analyzing images and data generated by linear accelerators, CT simulators, and other radiation oncology equipment.
Most scripts can be utilized with less than 10 lines of code.
The library also contains lower-level `hackable modules & tools <http://pylinac.readthedocs.org/en/stable/pylinac_core_hacking.html>`_
for creating your own image analysis algorithms.
The major features of the entire package include:
* Simple, concise image analysis API
* Automatic analysis of imaging and performance metrics like MTF, Contrast, ROIs, etc.
* PDF report generation for solid documentation
* Automatic phantom registration even if you don't set up your phantom perfect
* Image loading from file, ZIP archives, or URLs
%package -n python3-pylinac
Summary: A toolkit for performing TG-142 QA-related tasks on a linear accelerator
Provides: python-pylinac
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pylinac
|
Pylinac provides TG-142 quality assurance (QA) tools to Python programmers in the field of
therapy and diagnostic medical physics.
Pylinac contains high-level modules for automatically analyzing images and data generated by linear accelerators, CT simulators, and other radiation oncology equipment.
Most scripts can be utilized with less than 10 lines of code.
The library also contains lower-level `hackable modules & tools <http://pylinac.readthedocs.org/en/stable/pylinac_core_hacking.html>`_
for creating your own image analysis algorithms.
The major features of the entire package include:
* Simple, concise image analysis API
* Automatic analysis of imaging and performance metrics like MTF, Contrast, ROIs, etc.
* PDF report generation for solid documentation
* Automatic phantom registration even if you don't set up your phantom perfect
* Image loading from file, ZIP archives, or URLs
%package help
Summary: Development documents and examples for pylinac
Provides: python3-pylinac-doc
%description help
|
Pylinac provides TG-142 quality assurance (QA) tools to Python programmers in the field of
therapy and diagnostic medical physics.
Pylinac contains high-level modules for automatically analyzing images and data generated by linear accelerators, CT simulators, and other radiation oncology equipment.
Most scripts can be utilized with less than 10 lines of code.
The library also contains lower-level `hackable modules & tools <http://pylinac.readthedocs.org/en/stable/pylinac_core_hacking.html>`_
for creating your own image analysis algorithms.
The major features of the entire package include:
* Simple, concise image analysis API
* Automatic analysis of imaging and performance metrics like MTF, Contrast, ROIs, etc.
* PDF report generation for solid documentation
* Automatic phantom registration even if you don't set up your phantom perfect
* Image loading from file, ZIP archives, or URLs
%prep
%autosetup -n pylinac-3.11.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pylinac -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 3.11.0-1
- Package Spec generated
|