summaryrefslogtreecommitdiff
path: root/python-pymatting.spec
blob: 75b880eff771304a9b4adb069e0abfa8ddd36fc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
%global _empty_manifest_terminate_build 0
Name:		python-PyMatting
Version:	1.1.8
Release:	1
Summary:	Python package for alpha matting.
License:	MIT
URL:		https://pymatting.github.io
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/6b/2c/5aac0e60d4485503c9ba6d6690d9722414305e5beadd6252d98ed64a89e0/PyMatting-1.1.8.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-pillow
Requires:	python3-numba
Requires:	python3-scipy

%description
# PyMatting: A Python Library for Alpha Matting
[![License: MIT](https://img.shields.io/github/license/pymatting/pymatting?color=brightgreen)](https://opensource.org/licenses/MIT)
[![CI](https://img.shields.io/github/workflow/status/pymatting/pymatting/tests?label=tests)](https://github.com/pymatting/pymatting/actions?query=workflow%3Atests)
[![PyPI](https://img.shields.io/pypi/v/pymatting)](https://pypi.org/project/PyMatting/)
[![JOSS](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a/status.svg)](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a)
[![Gitter](https://img.shields.io/gitter/room/pymatting/pymatting)](https://gitter.im/pymatting/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

We introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.

- **Website and Documentation:** [https://pymatting.github.io/](https://pymatting.github.io)
- **Benchmarks:**  [https://pymatting.github.io/benchmark.html](https://pymatting.github.io/benchmark.html)

![Lemur](https://github.com/pymatting/pymatting/raw/master/data/lemur/lemur_at_the_beach.png)

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting provides:
- Alpha matting implementations for:
  - Closed Form Alpha Matting [[1]](#1)
  - Large Kernel Matting [[2]](#2)
  - KNN Matting [[3]](#3)
  - Learning Based Digital Matting [[4]](#4)
  - Random Walk Matting [[5]](#5)
- Foreground estimation implementations for:
  - Closed Form Foreground Estimation [[1]](#1)
  - Fast Multi-Level Foreground Estimation (CPU, CUDA and OpenCL) [[6]](#6)
- Fast multithreaded KNN search
- Preconditioners to accelerate the convergence rate of conjugate gradient descent:
  - The *incomplete thresholded Cholesky decomposition* (*Incomplete* is part of the name. The implementation is quite complete.)
  - The V-Cycle Geometric Multigrid preconditioner
- Readable code leveraging [NumPy](https://numpy.org/), [SciPy](https://www.scipy.org/scipylib/index.html) and [Numba](http://numba.pydata.org/)

## Getting Started

### Requirements

Minimal requiremens
* numpy>=1.16.0
* pillow>=5.2.0
* numba>=0.47.0
* scipy>=1.1.0

Additional requirements for GPU support
* cupy-cuda90>=6.5.0 or similar
* pyopencl>=2019.1.2

Requirements to run the tests
* pytest>=5.3.4

### Installation with PyPI

```bash
pip3 install pymatting
```

### Installation from Source

```bash
git clone https://github.com/pymatting/pymatting
cd pymatting
pip3 install .
```

## Example
```python
from pymatting import cutout

cutout(
    # input image path
    "data/lemur/lemur.png",
    # input trimap path
    "data/lemur/lemur_trimap.png",
    # output cutout path
    "lemur_cutout.png")
```

[More advanced examples](https://pymatting.github.io/examples.html)

## Trimap Construction

All implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown reagions.
Trimaps are expected to be `numpy.ndarrays` of type `np.float64`  having the same shape as the input image with only one color-channel.
Trimap values of 0.0 denote pixels which are 100% background.
Similarly, trimap values of 1.0 denote pixels which are 100% foreground.
All other values indicate unknown pixels which will be estimated by the algorithm.


## Testing

Run the tests from the main directory:
```
 python3 tests/download_images.py
 pip3 install -r requirements_tests.txt
 pytest
```

Currently 89% of the code is covered by tests.

## Upgrade

```bash
pip3 install --upgrade pymatting
python3 -c "import pymatting"
```

## Bug Reports, Questions and Pull-Requests

Please, see [our community guidelines](https://github.com/pymatting/pymatting/blob/master/CONTRIBUTING.md).

## Authors

- **Thomas Germer**
- **Tobias Uelwer**
- **Stefan Conrad**
- **Stefan Harmeling**

See also the list of [contributors](https://github.com/pymatting/pymatting/contributors) who participated in this project.

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details

## Citing

If you found PyMatting to be useful for your work, please consider citing our [paper](https://doi.org/10.21105/joss.02481):

```
@article{Germer2020,
  doi = {10.21105/joss.02481},
  url = {https://doi.org/10.21105/joss.02481},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2481},
  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},
  title = {PyMatting: A Python Library for Alpha Matting},
  journal = {Journal of Open Source Software}
}
```

## References

<a id="1">[1]</a> 
Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228–242, 2007.

<a id="2">[2]</a>
Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165–2172. IEEE, 2010.

<a id="3">[3]</a>
Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175–2188, 2013.

<a id="4">[4]</a>
Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889–896. IEEE, 2009.

<a id="5">[5]</a>
Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423–429. 2005.

<a id="6">[6]</a>
Germer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.

Lemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under [CC0 1.0 Universal (CC0 1.0) Public Domain License](https://creativecommons.org/publicdomain/zero/1.0/).


%package -n python3-PyMatting
Summary:	Python package for alpha matting.
Provides:	python-PyMatting
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-PyMatting
# PyMatting: A Python Library for Alpha Matting
[![License: MIT](https://img.shields.io/github/license/pymatting/pymatting?color=brightgreen)](https://opensource.org/licenses/MIT)
[![CI](https://img.shields.io/github/workflow/status/pymatting/pymatting/tests?label=tests)](https://github.com/pymatting/pymatting/actions?query=workflow%3Atests)
[![PyPI](https://img.shields.io/pypi/v/pymatting)](https://pypi.org/project/PyMatting/)
[![JOSS](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a/status.svg)](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a)
[![Gitter](https://img.shields.io/gitter/room/pymatting/pymatting)](https://gitter.im/pymatting/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

We introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.

- **Website and Documentation:** [https://pymatting.github.io/](https://pymatting.github.io)
- **Benchmarks:**  [https://pymatting.github.io/benchmark.html](https://pymatting.github.io/benchmark.html)

![Lemur](https://github.com/pymatting/pymatting/raw/master/data/lemur/lemur_at_the_beach.png)

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting provides:
- Alpha matting implementations for:
  - Closed Form Alpha Matting [[1]](#1)
  - Large Kernel Matting [[2]](#2)
  - KNN Matting [[3]](#3)
  - Learning Based Digital Matting [[4]](#4)
  - Random Walk Matting [[5]](#5)
- Foreground estimation implementations for:
  - Closed Form Foreground Estimation [[1]](#1)
  - Fast Multi-Level Foreground Estimation (CPU, CUDA and OpenCL) [[6]](#6)
- Fast multithreaded KNN search
- Preconditioners to accelerate the convergence rate of conjugate gradient descent:
  - The *incomplete thresholded Cholesky decomposition* (*Incomplete* is part of the name. The implementation is quite complete.)
  - The V-Cycle Geometric Multigrid preconditioner
- Readable code leveraging [NumPy](https://numpy.org/), [SciPy](https://www.scipy.org/scipylib/index.html) and [Numba](http://numba.pydata.org/)

## Getting Started

### Requirements

Minimal requiremens
* numpy>=1.16.0
* pillow>=5.2.0
* numba>=0.47.0
* scipy>=1.1.0

Additional requirements for GPU support
* cupy-cuda90>=6.5.0 or similar
* pyopencl>=2019.1.2

Requirements to run the tests
* pytest>=5.3.4

### Installation with PyPI

```bash
pip3 install pymatting
```

### Installation from Source

```bash
git clone https://github.com/pymatting/pymatting
cd pymatting
pip3 install .
```

## Example
```python
from pymatting import cutout

cutout(
    # input image path
    "data/lemur/lemur.png",
    # input trimap path
    "data/lemur/lemur_trimap.png",
    # output cutout path
    "lemur_cutout.png")
```

[More advanced examples](https://pymatting.github.io/examples.html)

## Trimap Construction

All implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown reagions.
Trimaps are expected to be `numpy.ndarrays` of type `np.float64`  having the same shape as the input image with only one color-channel.
Trimap values of 0.0 denote pixels which are 100% background.
Similarly, trimap values of 1.0 denote pixels which are 100% foreground.
All other values indicate unknown pixels which will be estimated by the algorithm.


## Testing

Run the tests from the main directory:
```
 python3 tests/download_images.py
 pip3 install -r requirements_tests.txt
 pytest
```

Currently 89% of the code is covered by tests.

## Upgrade

```bash
pip3 install --upgrade pymatting
python3 -c "import pymatting"
```

## Bug Reports, Questions and Pull-Requests

Please, see [our community guidelines](https://github.com/pymatting/pymatting/blob/master/CONTRIBUTING.md).

## Authors

- **Thomas Germer**
- **Tobias Uelwer**
- **Stefan Conrad**
- **Stefan Harmeling**

See also the list of [contributors](https://github.com/pymatting/pymatting/contributors) who participated in this project.

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details

## Citing

If you found PyMatting to be useful for your work, please consider citing our [paper](https://doi.org/10.21105/joss.02481):

```
@article{Germer2020,
  doi = {10.21105/joss.02481},
  url = {https://doi.org/10.21105/joss.02481},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2481},
  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},
  title = {PyMatting: A Python Library for Alpha Matting},
  journal = {Journal of Open Source Software}
}
```

## References

<a id="1">[1]</a> 
Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228–242, 2007.

<a id="2">[2]</a>
Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165–2172. IEEE, 2010.

<a id="3">[3]</a>
Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175–2188, 2013.

<a id="4">[4]</a>
Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889–896. IEEE, 2009.

<a id="5">[5]</a>
Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423–429. 2005.

<a id="6">[6]</a>
Germer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.

Lemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under [CC0 1.0 Universal (CC0 1.0) Public Domain License](https://creativecommons.org/publicdomain/zero/1.0/).


%package help
Summary:	Development documents and examples for PyMatting
Provides:	python3-PyMatting-doc
%description help
# PyMatting: A Python Library for Alpha Matting
[![License: MIT](https://img.shields.io/github/license/pymatting/pymatting?color=brightgreen)](https://opensource.org/licenses/MIT)
[![CI](https://img.shields.io/github/workflow/status/pymatting/pymatting/tests?label=tests)](https://github.com/pymatting/pymatting/actions?query=workflow%3Atests)
[![PyPI](https://img.shields.io/pypi/v/pymatting)](https://pypi.org/project/PyMatting/)
[![JOSS](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a/status.svg)](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a)
[![Gitter](https://img.shields.io/gitter/room/pymatting/pymatting)](https://gitter.im/pymatting/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

We introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.

- **Website and Documentation:** [https://pymatting.github.io/](https://pymatting.github.io)
- **Benchmarks:**  [https://pymatting.github.io/benchmark.html](https://pymatting.github.io/benchmark.html)

![Lemur](https://github.com/pymatting/pymatting/raw/master/data/lemur/lemur_at_the_beach.png)

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting provides:
- Alpha matting implementations for:
  - Closed Form Alpha Matting [[1]](#1)
  - Large Kernel Matting [[2]](#2)
  - KNN Matting [[3]](#3)
  - Learning Based Digital Matting [[4]](#4)
  - Random Walk Matting [[5]](#5)
- Foreground estimation implementations for:
  - Closed Form Foreground Estimation [[1]](#1)
  - Fast Multi-Level Foreground Estimation (CPU, CUDA and OpenCL) [[6]](#6)
- Fast multithreaded KNN search
- Preconditioners to accelerate the convergence rate of conjugate gradient descent:
  - The *incomplete thresholded Cholesky decomposition* (*Incomplete* is part of the name. The implementation is quite complete.)
  - The V-Cycle Geometric Multigrid preconditioner
- Readable code leveraging [NumPy](https://numpy.org/), [SciPy](https://www.scipy.org/scipylib/index.html) and [Numba](http://numba.pydata.org/)

## Getting Started

### Requirements

Minimal requiremens
* numpy>=1.16.0
* pillow>=5.2.0
* numba>=0.47.0
* scipy>=1.1.0

Additional requirements for GPU support
* cupy-cuda90>=6.5.0 or similar
* pyopencl>=2019.1.2

Requirements to run the tests
* pytest>=5.3.4

### Installation with PyPI

```bash
pip3 install pymatting
```

### Installation from Source

```bash
git clone https://github.com/pymatting/pymatting
cd pymatting
pip3 install .
```

## Example
```python
from pymatting import cutout

cutout(
    # input image path
    "data/lemur/lemur.png",
    # input trimap path
    "data/lemur/lemur_trimap.png",
    # output cutout path
    "lemur_cutout.png")
```

[More advanced examples](https://pymatting.github.io/examples.html)

## Trimap Construction

All implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown reagions.
Trimaps are expected to be `numpy.ndarrays` of type `np.float64`  having the same shape as the input image with only one color-channel.
Trimap values of 0.0 denote pixels which are 100% background.
Similarly, trimap values of 1.0 denote pixels which are 100% foreground.
All other values indicate unknown pixels which will be estimated by the algorithm.


## Testing

Run the tests from the main directory:
```
 python3 tests/download_images.py
 pip3 install -r requirements_tests.txt
 pytest
```

Currently 89% of the code is covered by tests.

## Upgrade

```bash
pip3 install --upgrade pymatting
python3 -c "import pymatting"
```

## Bug Reports, Questions and Pull-Requests

Please, see [our community guidelines](https://github.com/pymatting/pymatting/blob/master/CONTRIBUTING.md).

## Authors

- **Thomas Germer**
- **Tobias Uelwer**
- **Stefan Conrad**
- **Stefan Harmeling**

See also the list of [contributors](https://github.com/pymatting/pymatting/contributors) who participated in this project.

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details

## Citing

If you found PyMatting to be useful for your work, please consider citing our [paper](https://doi.org/10.21105/joss.02481):

```
@article{Germer2020,
  doi = {10.21105/joss.02481},
  url = {https://doi.org/10.21105/joss.02481},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2481},
  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},
  title = {PyMatting: A Python Library for Alpha Matting},
  journal = {Journal of Open Source Software}
}
```

## References

<a id="1">[1]</a> 
Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228–242, 2007.

<a id="2">[2]</a>
Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165–2172. IEEE, 2010.

<a id="3">[3]</a>
Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175–2188, 2013.

<a id="4">[4]</a>
Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889–896. IEEE, 2009.

<a id="5">[5]</a>
Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423–429. 2005.

<a id="6">[6]</a>
Germer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.

Lemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under [CC0 1.0 Universal (CC0 1.0) Public Domain License](https://creativecommons.org/publicdomain/zero/1.0/).


%prep
%autosetup -n PyMatting-1.1.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-PyMatting -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.8-1
- Package Spec generated