summaryrefslogtreecommitdiff
path: root/python-pymc3-hmm.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-pymc3-hmm.spec')
-rw-r--r--python-pymc3-hmm.spec213
1 files changed, 213 insertions, 0 deletions
diff --git a/python-pymc3-hmm.spec b/python-pymc3-hmm.spec
new file mode 100644
index 0000000..078c333
--- /dev/null
+++ b/python-pymc3-hmm.spec
@@ -0,0 +1,213 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pymc3-hmm
+Version: 0.2.5
+Release: 1
+Summary: Hidden Markov Models in PyMC3
+License: Apache Software License
+URL: http://github.com/AmpersandTV/pymc3-hmm
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/90/ba/cbb44a1adc4e16d0bba7dc610c0fcb00a3fbc0755bce0da38451577472f6/pymc3-hmm-0.2.5.tar.gz
+BuildArch: noarch
+
+
+%description
+![Build Status](https://github.com/AmpersandTV/pymc3-hmm/workflows/PyMC3-HMM/badge.svg)
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples)
+
+# PyMC3 HMM
+
+Hidden Markov models in [PyMC3](https://github.com/pymc-devs/pymc3).
+
+### Features
+- Fully implemented PyMC3 `Distribution` classes for HMM state sequences (`DiscreteMarkovChain`) and mixtures that are driven by them (`SwitchingProcess`)
+- A forward-filtering backward-sampling (FFBS) implementation (`FFBSStep`) that works with NUTS—or any other PyMC3 sampler
+- A conjugate Dirichlet transition matrix sampler (`TransMatConjugateStep`)
+- Support for time-varying transition matrices in the FFBS sampler and all the relevant `Distribution` classes
+
+To use these distributions and step methods in your PyMC3 models, simply import them from the `pymc3_hmm` package.
+
+See the [examples directory](https://nbviewer.jupyter.org/github/AmpersandTV/pymc3-hmm/tree/main/examples/) for demonstrations of the aforementioned features. You can also use [Binder](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples) to run the examples yourself.
+
+## Installation
+
+Currently, the package can be installed via `pip` directly from GitHub
+```shell
+$ pip install git+https://github.com/AmpersandTV/pymc3-hmm
+```
+
+## Development
+
+First, pull in the source from GitHub:
+
+```python
+$ git clone git@github.com:AmpersandTV/pymc3-hmm.git
+```
+
+Next, you can run `make conda` or `make venv` to set up a virtual environment.
+
+Once your virtual environment is set up, install the project, its dependencies, and the `pre-commit` hooks:
+
+```bash
+$ pip install -r requirements.txt
+$ pre-commit install --install-hooks
+```
+
+
+
+After making changes, be sure to run `make black` in order to automatically format the code and then `make check` to run the linters and tests.
+
+## License
+
+[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
+
+%package -n python3-pymc3-hmm
+Summary: Hidden Markov Models in PyMC3
+Provides: python-pymc3-hmm
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pymc3-hmm
+![Build Status](https://github.com/AmpersandTV/pymc3-hmm/workflows/PyMC3-HMM/badge.svg)
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples)
+
+# PyMC3 HMM
+
+Hidden Markov models in [PyMC3](https://github.com/pymc-devs/pymc3).
+
+### Features
+- Fully implemented PyMC3 `Distribution` classes for HMM state sequences (`DiscreteMarkovChain`) and mixtures that are driven by them (`SwitchingProcess`)
+- A forward-filtering backward-sampling (FFBS) implementation (`FFBSStep`) that works with NUTS—or any other PyMC3 sampler
+- A conjugate Dirichlet transition matrix sampler (`TransMatConjugateStep`)
+- Support for time-varying transition matrices in the FFBS sampler and all the relevant `Distribution` classes
+
+To use these distributions and step methods in your PyMC3 models, simply import them from the `pymc3_hmm` package.
+
+See the [examples directory](https://nbviewer.jupyter.org/github/AmpersandTV/pymc3-hmm/tree/main/examples/) for demonstrations of the aforementioned features. You can also use [Binder](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples) to run the examples yourself.
+
+## Installation
+
+Currently, the package can be installed via `pip` directly from GitHub
+```shell
+$ pip install git+https://github.com/AmpersandTV/pymc3-hmm
+```
+
+## Development
+
+First, pull in the source from GitHub:
+
+```python
+$ git clone git@github.com:AmpersandTV/pymc3-hmm.git
+```
+
+Next, you can run `make conda` or `make venv` to set up a virtual environment.
+
+Once your virtual environment is set up, install the project, its dependencies, and the `pre-commit` hooks:
+
+```bash
+$ pip install -r requirements.txt
+$ pre-commit install --install-hooks
+```
+
+
+
+After making changes, be sure to run `make black` in order to automatically format the code and then `make check` to run the linters and tests.
+
+## License
+
+[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
+
+%package help
+Summary: Development documents and examples for pymc3-hmm
+Provides: python3-pymc3-hmm-doc
+%description help
+![Build Status](https://github.com/AmpersandTV/pymc3-hmm/workflows/PyMC3-HMM/badge.svg)
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples)
+
+# PyMC3 HMM
+
+Hidden Markov models in [PyMC3](https://github.com/pymc-devs/pymc3).
+
+### Features
+- Fully implemented PyMC3 `Distribution` classes for HMM state sequences (`DiscreteMarkovChain`) and mixtures that are driven by them (`SwitchingProcess`)
+- A forward-filtering backward-sampling (FFBS) implementation (`FFBSStep`) that works with NUTS—or any other PyMC3 sampler
+- A conjugate Dirichlet transition matrix sampler (`TransMatConjugateStep`)
+- Support for time-varying transition matrices in the FFBS sampler and all the relevant `Distribution` classes
+
+To use these distributions and step methods in your PyMC3 models, simply import them from the `pymc3_hmm` package.
+
+See the [examples directory](https://nbviewer.jupyter.org/github/AmpersandTV/pymc3-hmm/tree/main/examples/) for demonstrations of the aforementioned features. You can also use [Binder](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples) to run the examples yourself.
+
+## Installation
+
+Currently, the package can be installed via `pip` directly from GitHub
+```shell
+$ pip install git+https://github.com/AmpersandTV/pymc3-hmm
+```
+
+## Development
+
+First, pull in the source from GitHub:
+
+```python
+$ git clone git@github.com:AmpersandTV/pymc3-hmm.git
+```
+
+Next, you can run `make conda` or `make venv` to set up a virtual environment.
+
+Once your virtual environment is set up, install the project, its dependencies, and the `pre-commit` hooks:
+
+```bash
+$ pip install -r requirements.txt
+$ pre-commit install --install-hooks
+```
+
+
+
+After making changes, be sure to run `make black` in order to automatically format the code and then `make check` to run the linters and tests.
+
+## License
+
+[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
+
+%prep
+%autosetup -n pymc3-hmm-0.2.5
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pymc3-hmm -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.5-1
+- Package Spec generated