summaryrefslogtreecommitdiff
path: root/python-pymc3-hmm.spec
blob: 078c3339c2bd3c6ea22d8b2e346969ae1eef6f6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
%global _empty_manifest_terminate_build 0
Name:		python-pymc3-hmm
Version:	0.2.5
Release:	1
Summary:	Hidden Markov Models in PyMC3
License:	Apache Software License
URL:		http://github.com/AmpersandTV/pymc3-hmm
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/90/ba/cbb44a1adc4e16d0bba7dc610c0fcb00a3fbc0755bce0da38451577472f6/pymc3-hmm-0.2.5.tar.gz
BuildArch:	noarch


%description
![Build Status](https://github.com/AmpersandTV/pymc3-hmm/workflows/PyMC3-HMM/badge.svg)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples)

# PyMC3 HMM

Hidden Markov models in [PyMC3](https://github.com/pymc-devs/pymc3).

### Features
- Fully implemented PyMC3 `Distribution` classes for HMM state sequences (`DiscreteMarkovChain`) and mixtures that are driven by them (`SwitchingProcess`)
- A forward-filtering backward-sampling (FFBS) implementation (`FFBSStep`) that works with NUTS—or any other PyMC3 sampler
- A conjugate Dirichlet transition matrix sampler (`TransMatConjugateStep`)
- Support for time-varying transition matrices in the FFBS sampler and all the relevant `Distribution` classes

To use these distributions and step methods in your PyMC3 models, simply import them from the `pymc3_hmm` package.

See the [examples directory](https://nbviewer.jupyter.org/github/AmpersandTV/pymc3-hmm/tree/main/examples/) for demonstrations of the aforementioned features.  You can also use [Binder](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples) to run the examples yourself.

## Installation

Currently, the package can be installed via `pip` directly from GitHub
```shell
$ pip install git+https://github.com/AmpersandTV/pymc3-hmm
```

## Development

First, pull in the source from GitHub:

```python
$ git clone git@github.com:AmpersandTV/pymc3-hmm.git
```

Next, you can run `make conda` or `make venv` to set up a virtual environment.

Once your virtual environment is set up, install the project, its dependencies, and the `pre-commit` hooks:

```bash
$ pip install -r requirements.txt
$ pre-commit install --install-hooks
```



After making changes, be sure to run `make black` in order to automatically format the code and then `make check` to run the linters and tests.

## License

[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)

%package -n python3-pymc3-hmm
Summary:	Hidden Markov Models in PyMC3
Provides:	python-pymc3-hmm
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pymc3-hmm
![Build Status](https://github.com/AmpersandTV/pymc3-hmm/workflows/PyMC3-HMM/badge.svg)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples)

# PyMC3 HMM

Hidden Markov models in [PyMC3](https://github.com/pymc-devs/pymc3).

### Features
- Fully implemented PyMC3 `Distribution` classes for HMM state sequences (`DiscreteMarkovChain`) and mixtures that are driven by them (`SwitchingProcess`)
- A forward-filtering backward-sampling (FFBS) implementation (`FFBSStep`) that works with NUTS—or any other PyMC3 sampler
- A conjugate Dirichlet transition matrix sampler (`TransMatConjugateStep`)
- Support for time-varying transition matrices in the FFBS sampler and all the relevant `Distribution` classes

To use these distributions and step methods in your PyMC3 models, simply import them from the `pymc3_hmm` package.

See the [examples directory](https://nbviewer.jupyter.org/github/AmpersandTV/pymc3-hmm/tree/main/examples/) for demonstrations of the aforementioned features.  You can also use [Binder](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples) to run the examples yourself.

## Installation

Currently, the package can be installed via `pip` directly from GitHub
```shell
$ pip install git+https://github.com/AmpersandTV/pymc3-hmm
```

## Development

First, pull in the source from GitHub:

```python
$ git clone git@github.com:AmpersandTV/pymc3-hmm.git
```

Next, you can run `make conda` or `make venv` to set up a virtual environment.

Once your virtual environment is set up, install the project, its dependencies, and the `pre-commit` hooks:

```bash
$ pip install -r requirements.txt
$ pre-commit install --install-hooks
```



After making changes, be sure to run `make black` in order to automatically format the code and then `make check` to run the linters and tests.

## License

[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)

%package help
Summary:	Development documents and examples for pymc3-hmm
Provides:	python3-pymc3-hmm-doc
%description help
![Build Status](https://github.com/AmpersandTV/pymc3-hmm/workflows/PyMC3-HMM/badge.svg)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples)

# PyMC3 HMM

Hidden Markov models in [PyMC3](https://github.com/pymc-devs/pymc3).

### Features
- Fully implemented PyMC3 `Distribution` classes for HMM state sequences (`DiscreteMarkovChain`) and mixtures that are driven by them (`SwitchingProcess`)
- A forward-filtering backward-sampling (FFBS) implementation (`FFBSStep`) that works with NUTS—or any other PyMC3 sampler
- A conjugate Dirichlet transition matrix sampler (`TransMatConjugateStep`)
- Support for time-varying transition matrices in the FFBS sampler and all the relevant `Distribution` classes

To use these distributions and step methods in your PyMC3 models, simply import them from the `pymc3_hmm` package.

See the [examples directory](https://nbviewer.jupyter.org/github/AmpersandTV/pymc3-hmm/tree/main/examples/) for demonstrations of the aforementioned features.  You can also use [Binder](https://mybinder.org/v2/gh/AmpersandTV/pymc3-hmm/main?filepath=examples) to run the examples yourself.

## Installation

Currently, the package can be installed via `pip` directly from GitHub
```shell
$ pip install git+https://github.com/AmpersandTV/pymc3-hmm
```

## Development

First, pull in the source from GitHub:

```python
$ git clone git@github.com:AmpersandTV/pymc3-hmm.git
```

Next, you can run `make conda` or `make venv` to set up a virtual environment.

Once your virtual environment is set up, install the project, its dependencies, and the `pre-commit` hooks:

```bash
$ pip install -r requirements.txt
$ pre-commit install --install-hooks
```



After making changes, be sure to run `make black` in order to automatically format the code and then `make check` to run the linters and tests.

## License

[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)

%prep
%autosetup -n pymc3-hmm-0.2.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pymc3-hmm -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.5-1
- Package Spec generated