1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
%global _empty_manifest_terminate_build 0
Name: python-pymoo
Version: 0.6.0.1
Release: 1
Summary: Multi-Objective Optimization in Python
License: Apache License 2.0
URL: https://pymoo.org
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c1/cb/b382ee907d83cfb28c0c364155703395abe54688ffa3e1713fe62d90a7cd/pymoo-0.6.0.1.tar.gz
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-autograd
Requires: python3-cma
Requires: python3-alive-progress
Requires: python3-dill
Requires: python3-Deprecated
%description
Our open-source framework pymoo offers state of the art single- and multi-objective algorithms and many more features
related to multi-objective optimization such as visualization and decision making.
Installation
********************************************************************************
First, make sure you have a Python 3 environment installed. We recommend miniconda3 or anaconda3.
The official release is always available at PyPi:
pip install -U pymoo
For the current developer version:
git clone https://github.com/anyoptimization/pymoo
cd pymoo
pip install .
Since for speedup, some of the modules are also available compiled, you can double-check
if the compilation worked. When executing the command, be sure not already being in the local pymoo
directory because otherwise not the in site-packages installed version will be used.
python -c "from pymoo.util.function_loader import is_compiled;print('Compiled Extensions: ', is_compiled())"
Usage
********************************************************************************
We refer here to our documentation for all the details.
However, for instance, executing NSGA2:
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.problems import get_problem
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter
problem = get_problem("zdt1")
algorithm = NSGA2(pop_size=100)
res = minimize(problem,
algorithm,
('n_gen', 200),
seed=1,
verbose=True)
plot = Scatter()
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.add(res.F, color="red")
plot.show()
A representative run of NSGA2 looks as follows:
|animation|
Citation
********************************************************************************
If you have used our framework for research purposes, you can cite our publication by:
| `J. Blank and K. Deb, pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567 <https://ieeexplore.ieee.org/document/9078759>`_
|
| BibTex:
@ARTICLE{pymoo,
author={J. {Blank} and K. {Deb}},
journal={IEEE Access},
title={pymoo: Multi-Objective Optimization in Python},
year={2020},
volume={8},
number={},
pages={89497-89509},
}
Contact
********************************************************************************
Feel free to contact me if you have any questions:
| `Julian Blank <http://julianblank.com>`_ (blankjul [at] msu.edu)
| Michigan State University
| Computational Optimization and Innovation Laboratory (COIN)
| East Lansing, MI 48824, USA
%package -n python3-pymoo
Summary: Multi-Objective Optimization in Python
Provides: python-pymoo
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-pymoo
Our open-source framework pymoo offers state of the art single- and multi-objective algorithms and many more features
related to multi-objective optimization such as visualization and decision making.
Installation
********************************************************************************
First, make sure you have a Python 3 environment installed. We recommend miniconda3 or anaconda3.
The official release is always available at PyPi:
pip install -U pymoo
For the current developer version:
git clone https://github.com/anyoptimization/pymoo
cd pymoo
pip install .
Since for speedup, some of the modules are also available compiled, you can double-check
if the compilation worked. When executing the command, be sure not already being in the local pymoo
directory because otherwise not the in site-packages installed version will be used.
python -c "from pymoo.util.function_loader import is_compiled;print('Compiled Extensions: ', is_compiled())"
Usage
********************************************************************************
We refer here to our documentation for all the details.
However, for instance, executing NSGA2:
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.problems import get_problem
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter
problem = get_problem("zdt1")
algorithm = NSGA2(pop_size=100)
res = minimize(problem,
algorithm,
('n_gen', 200),
seed=1,
verbose=True)
plot = Scatter()
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.add(res.F, color="red")
plot.show()
A representative run of NSGA2 looks as follows:
|animation|
Citation
********************************************************************************
If you have used our framework for research purposes, you can cite our publication by:
| `J. Blank and K. Deb, pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567 <https://ieeexplore.ieee.org/document/9078759>`_
|
| BibTex:
@ARTICLE{pymoo,
author={J. {Blank} and K. {Deb}},
journal={IEEE Access},
title={pymoo: Multi-Objective Optimization in Python},
year={2020},
volume={8},
number={},
pages={89497-89509},
}
Contact
********************************************************************************
Feel free to contact me if you have any questions:
| `Julian Blank <http://julianblank.com>`_ (blankjul [at] msu.edu)
| Michigan State University
| Computational Optimization and Innovation Laboratory (COIN)
| East Lansing, MI 48824, USA
%package help
Summary: Development documents and examples for pymoo
Provides: python3-pymoo-doc
%description help
Our open-source framework pymoo offers state of the art single- and multi-objective algorithms and many more features
related to multi-objective optimization such as visualization and decision making.
Installation
********************************************************************************
First, make sure you have a Python 3 environment installed. We recommend miniconda3 or anaconda3.
The official release is always available at PyPi:
pip install -U pymoo
For the current developer version:
git clone https://github.com/anyoptimization/pymoo
cd pymoo
pip install .
Since for speedup, some of the modules are also available compiled, you can double-check
if the compilation worked. When executing the command, be sure not already being in the local pymoo
directory because otherwise not the in site-packages installed version will be used.
python -c "from pymoo.util.function_loader import is_compiled;print('Compiled Extensions: ', is_compiled())"
Usage
********************************************************************************
We refer here to our documentation for all the details.
However, for instance, executing NSGA2:
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.problems import get_problem
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter
problem = get_problem("zdt1")
algorithm = NSGA2(pop_size=100)
res = minimize(problem,
algorithm,
('n_gen', 200),
seed=1,
verbose=True)
plot = Scatter()
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.add(res.F, color="red")
plot.show()
A representative run of NSGA2 looks as follows:
|animation|
Citation
********************************************************************************
If you have used our framework for research purposes, you can cite our publication by:
| `J. Blank and K. Deb, pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567 <https://ieeexplore.ieee.org/document/9078759>`_
|
| BibTex:
@ARTICLE{pymoo,
author={J. {Blank} and K. {Deb}},
journal={IEEE Access},
title={pymoo: Multi-Objective Optimization in Python},
year={2020},
volume={8},
number={},
pages={89497-89509},
}
Contact
********************************************************************************
Feel free to contact me if you have any questions:
| `Julian Blank <http://julianblank.com>`_ (blankjul [at] msu.edu)
| Michigan State University
| Computational Optimization and Innovation Laboratory (COIN)
| East Lansing, MI 48824, USA
%prep
%autosetup -n pymoo-0.6.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pymoo -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.0.1-1
- Package Spec generated
|