1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
%global _empty_manifest_terminate_build 0
Name: python-pynonymizer
Version: 1.25.0
Release: 1
Summary: An anonymization tool for production databases
License: MIT
URL: https://github.com/rwnx/pynonymizer
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/92/15/8c7c4691c6a0bb7d10b735bd687863bf1caa74999f68f41f60eacf8bb3b5/pynonymizer-1.25.0.tar.gz
BuildArch: noarch
Requires: python3-pyyaml
Requires: python3-tqdm
Requires: python3-faker
Requires: python3-dotenv
Requires: python3-pyodbc
%description
# `pynonymizer` [](https://pypi.org/project/pynonymizer/) [](https://pepy.tech/project/pynonymizer) 
pynonymizer is a universal tool for translating sensitive production database dumps into anonymized copies.
This can help you support GDPR/Data Protection in your organization without compromizing on quality testing data.
## Why are anonymized databases important?
The primary source of information on how your database is used is in _your production database_. In most situations, the production dataset is usually significantly larger than any development copy, and
would contain a wider range of data.
From time to time, it is prudent to run a new feature or stage a test against this dataset, rather
than one that is artificially created by developers or by testing frameworks. Anonymized databases allow us to use the structures present in production, while stripping them of any personally identifiable data that would
consitute a breach of privacy for end-users and subsequently a breach of GDPR.
With Anonymized databases, copies can be processed regularly, and distributed easily, leaving your developers and testers with a rich source of information on the volume and general makeup of the system in production. It can
be used to run better staging environments, integration tests, and even simulate database migrations.
below is an excerpt from an anonymized database:
| id |salutation | firstname | surname | email | dob |
| - | - | - | - | - | - |
| 1 | Dr. | Bernard | Gough | `tnelson@powell.com` | 2000-07-03 |
| 2 | Mr. | Molly | Bennett | `clarkeharriet@price-fry.com` | 2014-05-19 |
| 3 | Mrs. | Chelsea | Reid | `adamsamber@clayton.com` | 1974-09-08 |
| 4 | Dr. | Grace | Armstrong | `tracy36@wilson-matthews.com` | 1963-12-15 |
| 5 | Dr. | Stanley | James | `christine15@stewart.net` | 1976-09-16 |
| 6 | Dr. | Mark | Walsh | `dgardner@ward.biz` | 2004-08-28 |
| 7 | Mrs. | Josephine | Chambers | `hperry@allen.com` | 1916-04-04 |
| 8 | Dr. | Stephen | Thomas | `thompsonheather@smith-stevens.com` | 1995-04-17 |
| 9 | Ms. | Damian | Thompson | `yjones@cox.biz` | 2016-10-02 |
| 10 | Miss | Geraldine | Harris | `porteralice@francis-patel.com` | 1910-09-28 |
| 11 | Ms. | Gemma | Jones | `mandylewis@patel-thomas.net` | 1990-06-03 |
| 12 | Dr. | Glenn | Carr | `garnervalerie@farrell-parsons.biz` | 1998-04-19 |
## How does it work?
`pynonymizer` replaces personally identifiable data in your database with **realistic** pseudorandom data, from the `Faker` library or from other functions.
There are a wide variety of data types available which should suit the column in question, for example:
* `unique_email`
* `company`
* `file_path`
* `[...]`
Pynonymizer's main data replacement mechanism `fake_update` is a random selection from a small pool of data (`--seed-rows` controls the available Faker data). This process is chosen for compatibility and speed of operation, but does not guarantee uniqueness.
This may or may not suit your exact use-case. For a full list of data generation strategies, see the docs on [strategyfiles](https://github.com/rwnx/pynonymizer/blob/master/doc/strategyfiles.md)
### Examples
You can see strategyfile examples for existing database, such as wordpress or adventureworks sample database, in the the [examples folder](https://github.com/rwnx/pynonymizer/blob/master/examples).
### Process outline
1. Restore from dumpfile to temporary database.
1. Anonymize temporary database with strategy.
1. Dump resulting data to file.
1. Drop temporary database.
If this workflow doesnt work for you, see [process control](https://github.com/rwnx/pynonymizer/blob/master/doc/process-control.md) to see if it can be adjusted to suit your needs.
## Requirements
* Python >= 3.6
### mysql
* `mysql`/`mysqldump` Must be in $PATH
* Local or remote mysql >= 5.5
* Supported Inputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* Supported Outputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* LZMA-compressed SQL file `.xz`
### mssql
* Requires extra dependencies: install package `pynonymizer[mssql]`
* MSSQL >= 2008
* For `RESTORE_DB`/`DUMP_DB` operations, the database server *must* be running
locally with pynonymizer. This is because MSSQL `RESTORE` and `BACKUP` instructions
are received by the database, so piping a local backup to a remote server is not possible.
* The anonymize process can be performed on remote servers, but you are responsible for creating/managing the target database.
* Supported Inputs:
* Local backup file
* Supported Outputs:
* Local backup file
### postgres
* `psql`/`pg_dump` Must be in $PATH
* Local or remote postgres server
* Supported Inputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* Supported Outputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* LZMA-compressed SQL file `.xz`
# Getting Started
## Usage
### CLI
1. Write a [strategyfile](https://github.com/rwnx/pynonymizer/blob/master/doc/strategyfiles.md) for your database
1. Start Anonymizing!
```
usage: pynonymizer [-h] [--input INPUT] [--strategy STRATEGYFILE]
[--output OUTPUT] [--db-type DB_TYPE] [--db-host DB_HOST]
[--db-port DB_PORT] [--db-name DB_NAME] [--db-user DB_USER]
[--db-password DB_PASSWORD] [--fake-locale FAKE_LOCALE]
[--start-at STEP] [--only-step STEP]
[--skip-steps STEP [STEP ...]] [--stop-at STEP]
[--seed-rows SEED_ROWS] [--mssql-driver MSSQL_DRIVER]
[--mssql-backup-compression]
[--mysql-cmd-opts MYSQL_CMD_OPTS]
[--mysql-dump-opts MYSQL_DUMP_OPTS]
[--postgres-cmd-opts POSTGRES_CMD_OPTS]
[--postgres-dump-opts POSTGRES_DUMP_OPTS] [-v] [--verbose]
[--dry-run] [--ignore-anonymization-errors]
A tool for writing better anonymization strategies for your production
databases.
optional arguments:
-h, --help show this help message and exit
--input INPUT, -i INPUT
The source dump filepath to read from. Use `-` for
stdin. [$PYNONYMIZER_INPUT]
--strategy STRATEGYFILE, -s STRATEGYFILE
A strategyfile to use during anonymization.
[$PYNONYMIZER_STRATEGY]
--output OUTPUT, -o OUTPUT
The destination filepath to write the dumped output
to. Use `-` for stdout. [$PYNONYMIZER_OUTPUT]
--db-type DB_TYPE, -t DB_TYPE
Type of database to interact with. More databases will
be supported in future versions. default: mysql
[$PYNONYMIZER_DB_TYPE]
--db-host DB_HOST, -d DB_HOST
Database hostname or IP address.
[$PYNONYMIZER_DB_HOST]
--db-port DB_PORT, -P DB_PORT
Database port. Defaults to provider default.
[$PYNONYMIZER_DB_PORT]
--db-name DB_NAME, -n DB_NAME
Name of database to restore and anonymize in. If not
provided, a unique name will be generated from the
strategy name. This will be dropped at the end of the
run. [$PYNONYMIZER_DB_NAME]
--db-user DB_USER, -u DB_USER
Database credentials: username. [$PYNONYMIZER_DB_USER]
--db-password DB_PASSWORD, -p DB_PASSWORD
Database credentials: password.
[$PYNONYMIZER_DB_PASSWORD]
--fake-locale FAKE_LOCALE, -l FAKE_LOCALE
Locale setting to initialize fake data generation.
Affects Names, addresses, formats, etc.
[$PYNONYMIZER_FAKE_LOCALE]
--start-at STEP Choose a step to begin the process (inclusive).
[$PYNONYMIZER_START_AT]
--only-step STEP Choose one step to perform. [$PYNONYMIZER_ONLY_STEP]
--skip-steps STEP [STEP ...]
Choose one or more steps to skip.
[$PYNONYMIZER_SKIP_STEPS]
--stop-at STEP Choose a step to stop at (inclusive).
[$PYNONYMIZER_STOP_AT]
--seed-rows SEED_ROWS
Specify a number of rows to populate the fake data
table used during anonymization. Defaults to 150.
[$PYNONYMIZER_SEED_ROWS]
--mssql-driver MSSQL_DRIVER
[MSSQL] ODBC driver to use for database connection
[$PYNONYMIZER_MSSQL_DRIVER]
--mssql-backup-compression
[MSSQL] Use compression when backing up the database.
[$PYNONYMIZER_MSSQL_BACKUP_COMPRESSION]
--mysql-cmd-opts MYSQL_CMD_OPTS
[MYSQL] pass additional arguments to the restore
process (advanced use only!).
[$PYNONYMIZER_MYSQL_CMD_OPTS]
--mysql-dump-opts MYSQL_DUMP_OPTS
[MYSQL] pass additional arguments to the dump process
(advanced use only!). [$PYNONYMIZER_MYSQL_DUMP_OPTS]
--postgres-cmd-opts POSTGRES_CMD_OPTS
[POSTGRES] pass additional arguments to the restore
process (advanced use only!).
[$PYNONYMIZER_POSTGRES_CMD_OPTS]
--postgres-dump-opts POSTGRES_DUMP_OPTS
[POSTGRES] pass additional arguments to the dump
process (advanced use only!).
[$PYNONYMIZER_POSTGRES_DUMP_OPTS]
-v, --version show program's version number and exit
--verbose Increases the verbosity of the logging feature, to
help when troubleshooting issues.
[$PYNONYMIZER_VERBOSE]
--dry-run Instruct pynonymizer to skip all process steps. Useful
for testing safely. [$PYNONYMIZER_DRY_RUN]
--ignore-anonymization-errors
Instruct pynonymizer to ignore errors during the
anonymization process and continue as normal.
[$PYNONYMIZER_IGNORE_ANONYMIZATION_ERRORS]
```
### Package
Pynonymizer can also be invoked programmatically / from other python code. See the module entrypoint [pynonymizer](pynonymizer/__init__.py) or [pynonymizer/pynonymize.py](pynonymizer/pynonymize.py)
```python
import pynonymizer
pynonymizer.run(input_path="./backup.sql", strategyfile_path="./strategy.yml" [...] )
```
%package -n python3-pynonymizer
Summary: An anonymization tool for production databases
Provides: python-pynonymizer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pynonymizer
# `pynonymizer` [](https://pypi.org/project/pynonymizer/) [](https://pepy.tech/project/pynonymizer) 
pynonymizer is a universal tool for translating sensitive production database dumps into anonymized copies.
This can help you support GDPR/Data Protection in your organization without compromizing on quality testing data.
## Why are anonymized databases important?
The primary source of information on how your database is used is in _your production database_. In most situations, the production dataset is usually significantly larger than any development copy, and
would contain a wider range of data.
From time to time, it is prudent to run a new feature or stage a test against this dataset, rather
than one that is artificially created by developers or by testing frameworks. Anonymized databases allow us to use the structures present in production, while stripping them of any personally identifiable data that would
consitute a breach of privacy for end-users and subsequently a breach of GDPR.
With Anonymized databases, copies can be processed regularly, and distributed easily, leaving your developers and testers with a rich source of information on the volume and general makeup of the system in production. It can
be used to run better staging environments, integration tests, and even simulate database migrations.
below is an excerpt from an anonymized database:
| id |salutation | firstname | surname | email | dob |
| - | - | - | - | - | - |
| 1 | Dr. | Bernard | Gough | `tnelson@powell.com` | 2000-07-03 |
| 2 | Mr. | Molly | Bennett | `clarkeharriet@price-fry.com` | 2014-05-19 |
| 3 | Mrs. | Chelsea | Reid | `adamsamber@clayton.com` | 1974-09-08 |
| 4 | Dr. | Grace | Armstrong | `tracy36@wilson-matthews.com` | 1963-12-15 |
| 5 | Dr. | Stanley | James | `christine15@stewart.net` | 1976-09-16 |
| 6 | Dr. | Mark | Walsh | `dgardner@ward.biz` | 2004-08-28 |
| 7 | Mrs. | Josephine | Chambers | `hperry@allen.com` | 1916-04-04 |
| 8 | Dr. | Stephen | Thomas | `thompsonheather@smith-stevens.com` | 1995-04-17 |
| 9 | Ms. | Damian | Thompson | `yjones@cox.biz` | 2016-10-02 |
| 10 | Miss | Geraldine | Harris | `porteralice@francis-patel.com` | 1910-09-28 |
| 11 | Ms. | Gemma | Jones | `mandylewis@patel-thomas.net` | 1990-06-03 |
| 12 | Dr. | Glenn | Carr | `garnervalerie@farrell-parsons.biz` | 1998-04-19 |
## How does it work?
`pynonymizer` replaces personally identifiable data in your database with **realistic** pseudorandom data, from the `Faker` library or from other functions.
There are a wide variety of data types available which should suit the column in question, for example:
* `unique_email`
* `company`
* `file_path`
* `[...]`
Pynonymizer's main data replacement mechanism `fake_update` is a random selection from a small pool of data (`--seed-rows` controls the available Faker data). This process is chosen for compatibility and speed of operation, but does not guarantee uniqueness.
This may or may not suit your exact use-case. For a full list of data generation strategies, see the docs on [strategyfiles](https://github.com/rwnx/pynonymizer/blob/master/doc/strategyfiles.md)
### Examples
You can see strategyfile examples for existing database, such as wordpress or adventureworks sample database, in the the [examples folder](https://github.com/rwnx/pynonymizer/blob/master/examples).
### Process outline
1. Restore from dumpfile to temporary database.
1. Anonymize temporary database with strategy.
1. Dump resulting data to file.
1. Drop temporary database.
If this workflow doesnt work for you, see [process control](https://github.com/rwnx/pynonymizer/blob/master/doc/process-control.md) to see if it can be adjusted to suit your needs.
## Requirements
* Python >= 3.6
### mysql
* `mysql`/`mysqldump` Must be in $PATH
* Local or remote mysql >= 5.5
* Supported Inputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* Supported Outputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* LZMA-compressed SQL file `.xz`
### mssql
* Requires extra dependencies: install package `pynonymizer[mssql]`
* MSSQL >= 2008
* For `RESTORE_DB`/`DUMP_DB` operations, the database server *must* be running
locally with pynonymizer. This is because MSSQL `RESTORE` and `BACKUP` instructions
are received by the database, so piping a local backup to a remote server is not possible.
* The anonymize process can be performed on remote servers, but you are responsible for creating/managing the target database.
* Supported Inputs:
* Local backup file
* Supported Outputs:
* Local backup file
### postgres
* `psql`/`pg_dump` Must be in $PATH
* Local or remote postgres server
* Supported Inputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* Supported Outputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* LZMA-compressed SQL file `.xz`
# Getting Started
## Usage
### CLI
1. Write a [strategyfile](https://github.com/rwnx/pynonymizer/blob/master/doc/strategyfiles.md) for your database
1. Start Anonymizing!
```
usage: pynonymizer [-h] [--input INPUT] [--strategy STRATEGYFILE]
[--output OUTPUT] [--db-type DB_TYPE] [--db-host DB_HOST]
[--db-port DB_PORT] [--db-name DB_NAME] [--db-user DB_USER]
[--db-password DB_PASSWORD] [--fake-locale FAKE_LOCALE]
[--start-at STEP] [--only-step STEP]
[--skip-steps STEP [STEP ...]] [--stop-at STEP]
[--seed-rows SEED_ROWS] [--mssql-driver MSSQL_DRIVER]
[--mssql-backup-compression]
[--mysql-cmd-opts MYSQL_CMD_OPTS]
[--mysql-dump-opts MYSQL_DUMP_OPTS]
[--postgres-cmd-opts POSTGRES_CMD_OPTS]
[--postgres-dump-opts POSTGRES_DUMP_OPTS] [-v] [--verbose]
[--dry-run] [--ignore-anonymization-errors]
A tool for writing better anonymization strategies for your production
databases.
optional arguments:
-h, --help show this help message and exit
--input INPUT, -i INPUT
The source dump filepath to read from. Use `-` for
stdin. [$PYNONYMIZER_INPUT]
--strategy STRATEGYFILE, -s STRATEGYFILE
A strategyfile to use during anonymization.
[$PYNONYMIZER_STRATEGY]
--output OUTPUT, -o OUTPUT
The destination filepath to write the dumped output
to. Use `-` for stdout. [$PYNONYMIZER_OUTPUT]
--db-type DB_TYPE, -t DB_TYPE
Type of database to interact with. More databases will
be supported in future versions. default: mysql
[$PYNONYMIZER_DB_TYPE]
--db-host DB_HOST, -d DB_HOST
Database hostname or IP address.
[$PYNONYMIZER_DB_HOST]
--db-port DB_PORT, -P DB_PORT
Database port. Defaults to provider default.
[$PYNONYMIZER_DB_PORT]
--db-name DB_NAME, -n DB_NAME
Name of database to restore and anonymize in. If not
provided, a unique name will be generated from the
strategy name. This will be dropped at the end of the
run. [$PYNONYMIZER_DB_NAME]
--db-user DB_USER, -u DB_USER
Database credentials: username. [$PYNONYMIZER_DB_USER]
--db-password DB_PASSWORD, -p DB_PASSWORD
Database credentials: password.
[$PYNONYMIZER_DB_PASSWORD]
--fake-locale FAKE_LOCALE, -l FAKE_LOCALE
Locale setting to initialize fake data generation.
Affects Names, addresses, formats, etc.
[$PYNONYMIZER_FAKE_LOCALE]
--start-at STEP Choose a step to begin the process (inclusive).
[$PYNONYMIZER_START_AT]
--only-step STEP Choose one step to perform. [$PYNONYMIZER_ONLY_STEP]
--skip-steps STEP [STEP ...]
Choose one or more steps to skip.
[$PYNONYMIZER_SKIP_STEPS]
--stop-at STEP Choose a step to stop at (inclusive).
[$PYNONYMIZER_STOP_AT]
--seed-rows SEED_ROWS
Specify a number of rows to populate the fake data
table used during anonymization. Defaults to 150.
[$PYNONYMIZER_SEED_ROWS]
--mssql-driver MSSQL_DRIVER
[MSSQL] ODBC driver to use for database connection
[$PYNONYMIZER_MSSQL_DRIVER]
--mssql-backup-compression
[MSSQL] Use compression when backing up the database.
[$PYNONYMIZER_MSSQL_BACKUP_COMPRESSION]
--mysql-cmd-opts MYSQL_CMD_OPTS
[MYSQL] pass additional arguments to the restore
process (advanced use only!).
[$PYNONYMIZER_MYSQL_CMD_OPTS]
--mysql-dump-opts MYSQL_DUMP_OPTS
[MYSQL] pass additional arguments to the dump process
(advanced use only!). [$PYNONYMIZER_MYSQL_DUMP_OPTS]
--postgres-cmd-opts POSTGRES_CMD_OPTS
[POSTGRES] pass additional arguments to the restore
process (advanced use only!).
[$PYNONYMIZER_POSTGRES_CMD_OPTS]
--postgres-dump-opts POSTGRES_DUMP_OPTS
[POSTGRES] pass additional arguments to the dump
process (advanced use only!).
[$PYNONYMIZER_POSTGRES_DUMP_OPTS]
-v, --version show program's version number and exit
--verbose Increases the verbosity of the logging feature, to
help when troubleshooting issues.
[$PYNONYMIZER_VERBOSE]
--dry-run Instruct pynonymizer to skip all process steps. Useful
for testing safely. [$PYNONYMIZER_DRY_RUN]
--ignore-anonymization-errors
Instruct pynonymizer to ignore errors during the
anonymization process and continue as normal.
[$PYNONYMIZER_IGNORE_ANONYMIZATION_ERRORS]
```
### Package
Pynonymizer can also be invoked programmatically / from other python code. See the module entrypoint [pynonymizer](pynonymizer/__init__.py) or [pynonymizer/pynonymize.py](pynonymizer/pynonymize.py)
```python
import pynonymizer
pynonymizer.run(input_path="./backup.sql", strategyfile_path="./strategy.yml" [...] )
```
%package help
Summary: Development documents and examples for pynonymizer
Provides: python3-pynonymizer-doc
%description help
# `pynonymizer` [](https://pypi.org/project/pynonymizer/) [](https://pepy.tech/project/pynonymizer) 
pynonymizer is a universal tool for translating sensitive production database dumps into anonymized copies.
This can help you support GDPR/Data Protection in your organization without compromizing on quality testing data.
## Why are anonymized databases important?
The primary source of information on how your database is used is in _your production database_. In most situations, the production dataset is usually significantly larger than any development copy, and
would contain a wider range of data.
From time to time, it is prudent to run a new feature or stage a test against this dataset, rather
than one that is artificially created by developers or by testing frameworks. Anonymized databases allow us to use the structures present in production, while stripping them of any personally identifiable data that would
consitute a breach of privacy for end-users and subsequently a breach of GDPR.
With Anonymized databases, copies can be processed regularly, and distributed easily, leaving your developers and testers with a rich source of information on the volume and general makeup of the system in production. It can
be used to run better staging environments, integration tests, and even simulate database migrations.
below is an excerpt from an anonymized database:
| id |salutation | firstname | surname | email | dob |
| - | - | - | - | - | - |
| 1 | Dr. | Bernard | Gough | `tnelson@powell.com` | 2000-07-03 |
| 2 | Mr. | Molly | Bennett | `clarkeharriet@price-fry.com` | 2014-05-19 |
| 3 | Mrs. | Chelsea | Reid | `adamsamber@clayton.com` | 1974-09-08 |
| 4 | Dr. | Grace | Armstrong | `tracy36@wilson-matthews.com` | 1963-12-15 |
| 5 | Dr. | Stanley | James | `christine15@stewart.net` | 1976-09-16 |
| 6 | Dr. | Mark | Walsh | `dgardner@ward.biz` | 2004-08-28 |
| 7 | Mrs. | Josephine | Chambers | `hperry@allen.com` | 1916-04-04 |
| 8 | Dr. | Stephen | Thomas | `thompsonheather@smith-stevens.com` | 1995-04-17 |
| 9 | Ms. | Damian | Thompson | `yjones@cox.biz` | 2016-10-02 |
| 10 | Miss | Geraldine | Harris | `porteralice@francis-patel.com` | 1910-09-28 |
| 11 | Ms. | Gemma | Jones | `mandylewis@patel-thomas.net` | 1990-06-03 |
| 12 | Dr. | Glenn | Carr | `garnervalerie@farrell-parsons.biz` | 1998-04-19 |
## How does it work?
`pynonymizer` replaces personally identifiable data in your database with **realistic** pseudorandom data, from the `Faker` library or from other functions.
There are a wide variety of data types available which should suit the column in question, for example:
* `unique_email`
* `company`
* `file_path`
* `[...]`
Pynonymizer's main data replacement mechanism `fake_update` is a random selection from a small pool of data (`--seed-rows` controls the available Faker data). This process is chosen for compatibility and speed of operation, but does not guarantee uniqueness.
This may or may not suit your exact use-case. For a full list of data generation strategies, see the docs on [strategyfiles](https://github.com/rwnx/pynonymizer/blob/master/doc/strategyfiles.md)
### Examples
You can see strategyfile examples for existing database, such as wordpress or adventureworks sample database, in the the [examples folder](https://github.com/rwnx/pynonymizer/blob/master/examples).
### Process outline
1. Restore from dumpfile to temporary database.
1. Anonymize temporary database with strategy.
1. Dump resulting data to file.
1. Drop temporary database.
If this workflow doesnt work for you, see [process control](https://github.com/rwnx/pynonymizer/blob/master/doc/process-control.md) to see if it can be adjusted to suit your needs.
## Requirements
* Python >= 3.6
### mysql
* `mysql`/`mysqldump` Must be in $PATH
* Local or remote mysql >= 5.5
* Supported Inputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* Supported Outputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* LZMA-compressed SQL file `.xz`
### mssql
* Requires extra dependencies: install package `pynonymizer[mssql]`
* MSSQL >= 2008
* For `RESTORE_DB`/`DUMP_DB` operations, the database server *must* be running
locally with pynonymizer. This is because MSSQL `RESTORE` and `BACKUP` instructions
are received by the database, so piping a local backup to a remote server is not possible.
* The anonymize process can be performed on remote servers, but you are responsible for creating/managing the target database.
* Supported Inputs:
* Local backup file
* Supported Outputs:
* Local backup file
### postgres
* `psql`/`pg_dump` Must be in $PATH
* Local or remote postgres server
* Supported Inputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* Supported Outputs:
* Plain SQL over stdout
* Plain SQL file `.sql`
* GZip-compressed SQL file `.gz`
* LZMA-compressed SQL file `.xz`
# Getting Started
## Usage
### CLI
1. Write a [strategyfile](https://github.com/rwnx/pynonymizer/blob/master/doc/strategyfiles.md) for your database
1. Start Anonymizing!
```
usage: pynonymizer [-h] [--input INPUT] [--strategy STRATEGYFILE]
[--output OUTPUT] [--db-type DB_TYPE] [--db-host DB_HOST]
[--db-port DB_PORT] [--db-name DB_NAME] [--db-user DB_USER]
[--db-password DB_PASSWORD] [--fake-locale FAKE_LOCALE]
[--start-at STEP] [--only-step STEP]
[--skip-steps STEP [STEP ...]] [--stop-at STEP]
[--seed-rows SEED_ROWS] [--mssql-driver MSSQL_DRIVER]
[--mssql-backup-compression]
[--mysql-cmd-opts MYSQL_CMD_OPTS]
[--mysql-dump-opts MYSQL_DUMP_OPTS]
[--postgres-cmd-opts POSTGRES_CMD_OPTS]
[--postgres-dump-opts POSTGRES_DUMP_OPTS] [-v] [--verbose]
[--dry-run] [--ignore-anonymization-errors]
A tool for writing better anonymization strategies for your production
databases.
optional arguments:
-h, --help show this help message and exit
--input INPUT, -i INPUT
The source dump filepath to read from. Use `-` for
stdin. [$PYNONYMIZER_INPUT]
--strategy STRATEGYFILE, -s STRATEGYFILE
A strategyfile to use during anonymization.
[$PYNONYMIZER_STRATEGY]
--output OUTPUT, -o OUTPUT
The destination filepath to write the dumped output
to. Use `-` for stdout. [$PYNONYMIZER_OUTPUT]
--db-type DB_TYPE, -t DB_TYPE
Type of database to interact with. More databases will
be supported in future versions. default: mysql
[$PYNONYMIZER_DB_TYPE]
--db-host DB_HOST, -d DB_HOST
Database hostname or IP address.
[$PYNONYMIZER_DB_HOST]
--db-port DB_PORT, -P DB_PORT
Database port. Defaults to provider default.
[$PYNONYMIZER_DB_PORT]
--db-name DB_NAME, -n DB_NAME
Name of database to restore and anonymize in. If not
provided, a unique name will be generated from the
strategy name. This will be dropped at the end of the
run. [$PYNONYMIZER_DB_NAME]
--db-user DB_USER, -u DB_USER
Database credentials: username. [$PYNONYMIZER_DB_USER]
--db-password DB_PASSWORD, -p DB_PASSWORD
Database credentials: password.
[$PYNONYMIZER_DB_PASSWORD]
--fake-locale FAKE_LOCALE, -l FAKE_LOCALE
Locale setting to initialize fake data generation.
Affects Names, addresses, formats, etc.
[$PYNONYMIZER_FAKE_LOCALE]
--start-at STEP Choose a step to begin the process (inclusive).
[$PYNONYMIZER_START_AT]
--only-step STEP Choose one step to perform. [$PYNONYMIZER_ONLY_STEP]
--skip-steps STEP [STEP ...]
Choose one or more steps to skip.
[$PYNONYMIZER_SKIP_STEPS]
--stop-at STEP Choose a step to stop at (inclusive).
[$PYNONYMIZER_STOP_AT]
--seed-rows SEED_ROWS
Specify a number of rows to populate the fake data
table used during anonymization. Defaults to 150.
[$PYNONYMIZER_SEED_ROWS]
--mssql-driver MSSQL_DRIVER
[MSSQL] ODBC driver to use for database connection
[$PYNONYMIZER_MSSQL_DRIVER]
--mssql-backup-compression
[MSSQL] Use compression when backing up the database.
[$PYNONYMIZER_MSSQL_BACKUP_COMPRESSION]
--mysql-cmd-opts MYSQL_CMD_OPTS
[MYSQL] pass additional arguments to the restore
process (advanced use only!).
[$PYNONYMIZER_MYSQL_CMD_OPTS]
--mysql-dump-opts MYSQL_DUMP_OPTS
[MYSQL] pass additional arguments to the dump process
(advanced use only!). [$PYNONYMIZER_MYSQL_DUMP_OPTS]
--postgres-cmd-opts POSTGRES_CMD_OPTS
[POSTGRES] pass additional arguments to the restore
process (advanced use only!).
[$PYNONYMIZER_POSTGRES_CMD_OPTS]
--postgres-dump-opts POSTGRES_DUMP_OPTS
[POSTGRES] pass additional arguments to the dump
process (advanced use only!).
[$PYNONYMIZER_POSTGRES_DUMP_OPTS]
-v, --version show program's version number and exit
--verbose Increases the verbosity of the logging feature, to
help when troubleshooting issues.
[$PYNONYMIZER_VERBOSE]
--dry-run Instruct pynonymizer to skip all process steps. Useful
for testing safely. [$PYNONYMIZER_DRY_RUN]
--ignore-anonymization-errors
Instruct pynonymizer to ignore errors during the
anonymization process and continue as normal.
[$PYNONYMIZER_IGNORE_ANONYMIZATION_ERRORS]
```
### Package
Pynonymizer can also be invoked programmatically / from other python code. See the module entrypoint [pynonymizer](pynonymizer/__init__.py) or [pynonymizer/pynonymize.py](pynonymizer/pynonymize.py)
```python
import pynonymizer
pynonymizer.run(input_path="./backup.sql", strategyfile_path="./strategy.yml" [...] )
```
%prep
%autosetup -n pynonymizer-1.25.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pynonymizer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.25.0-1
- Package Spec generated
|