1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
|
%global _empty_manifest_terminate_build 0
Name: python-pyrate-limiter
Version: 2.10.0
Release: 1
Summary: Python Rate-Limiter using Leaky-Bucket Algorithm
License: MIT
URL: https://github.com/vutran1710/PyrateLimiter
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c0/a2/bb73c385e6d68cbe0ebe6ff16c22c96a79194c1298b2942005fcaf3eda9d/pyrate_limiter-2.10.0.tar.gz
BuildArch: noarch
Requires: python3-filelock
Requires: python3-redis
Requires: python3-redis-py-cluster
Requires: python3-furo
Requires: python3-myst-parser
Requires: python3-sphinx
Requires: python3-sphinx-autodoc-typehints
Requires: python3-sphinx-copybutton
Requires: python3-sphinxcontrib-apidoc
%description
<img align="left" width="95" height="120" src="docs/_static/logo.png">
# PyrateLimiter
The request rate limiter using Leaky-bucket algorithm.
Full project documentation can be found at [pyratelimiter.readthedocs.io](https://pyratelimiter.readthedocs.io).
[](https://badge.fury.io/py/pyrate-limiter)
[](https://pypi.org/project/pyrate-limiter)
[](https://codecov.io/gh/vutran1710/PyrateLimiter)
[](https://github.com/vutran1710/PyrateLimiter/graphs/commit-activity)
[](https://pypi.python.org/pypi/pyrate-limiter/)
<br>
## Contents
- [PyrateLimiter](#pyratelimiter)
- [Contents](#contents)
- [Features](#features)
- [Installation](#installation)
- [Basic usage](#basic-usage)
- [Defining rate limits](#defining-rate-limits)
- [Applying rate limits](#applying-rate-limits)
- [Identities](#identities)
- [Handling exceeded limits](#handling-exceeded-limits)
- [Bucket analogy](#bucket-analogy)
- [Rate limit exceptions](#rate-limit-exceptions)
- [Rate limit delays](#rate-limit-delays)
- [Additional usage options](#additional-usage-options)
- [Decorator](#decorator)
- [Contextmanager](#contextmanager)
- [Async decorator/contextmanager](#async-decoratorcontextmanager)
- [Backends](#backends)
- [Memory](#memory)
- [SQLite](#sqlite)
- [Redis](#redis)
- [Custom backends](#custom-backends)
- [Additional features](#additional-features)
- [Time sources](#time-sources)
- [Examples](#examples)
## Features
* Tracks any number of rate limits and intervals you want to define
* Independently tracks rate limits for multiple services or resources
* Handles exceeded rate limits by either raising errors or adding delays
* Several usage options including a normal function call, a decorator, or a contextmanager
* Async support
* Includes optional SQLite and Redis backends, which can be used to persist limit tracking across
multiple threads, processes, or application restarts
## Installation
Install using pip:
```
pip install pyrate-limiter
```
Or using conda:
```
conda install --channel conda-forge pyrate-limiter
```
## Basic usage
### Defining rate limits
Consider some public API (like LinkedIn, GitHub, etc.) that has rate limits like the following:
```
- 500 requests per hour
- 1000 requests per day
- 10000 requests per month
```
You can define these rates using the `RequestRate` class, and add them to a `Limiter`:
``` python
from pyrate_limiter import Duration, RequestRate, Limiter
hourly_rate = RequestRate(500, Duration.HOUR) # 500 requests per hour
daily_rate = RequestRate(1000, Duration.DAY) # 1000 requests per day
monthly_rate = RequestRate(10000, Duration.MONTH) # 10000 requests per month
limiter = Limiter(hourly_rate, daily_rate, monthly_rate)
```
or
``` python
from pyrate_limiter import Duration, RequestRate, Limiter
rate_limits = (
RequestRate(500, Duration.HOUR), # 500 requests per hour
RequestRate(1000, Duration.DAY), # 1000 requests per day
RequestRate(10000, Duration.MONTH), # 10000 requests per month
)
limiter = Limiter(*rate_limits)
```
Note that these rates need to be ordered by interval length; in other words, an hourly rate must
come before a daily rate, etc.
### Applying rate limits
Then, use `Limiter.try_acquire()` wherever you are making requests (or other rate-limited operations).
This will raise an exception if the rate limit is exceeded.
```python
import requests
def request_function():
limiter.try_acquire('identity')
requests.get('https://example.com')
while True:
request_function()
```
Alternatively, you can use `Limiter.ratelimit()` as a function decorator:
```python
@limiter.ratelimit('identity')
def request_function():
requests.get('https://example.com')
```
See [Additional usage options](#additional-usage-options) below for more details.
### Identities
Note that both `try_acquire()` and `ratelimit()` take one or more `identity` arguments. Typically this is
the name of the service or resource that is being rate-limited. This allows you to track rate limits
for these resources independently. For example, if you have a service that is rate-limited by user:
```python
def request_function(user_ids):
limiter.try_acquire(*user_ids)
for user_id in user_ids:
requests.get(f'https://example.com?user_id={user_id}')
```
## Handling exceeded limits
When a rate limit is exceeded, you have two options: raise an exception, or add delays.
### Bucket analogy
<img height="300" align="right" src="https://upload.wikimedia.org/wikipedia/commons/c/c4/Leaky_bucket_analogy.JPG">
At this point it's useful to introduce the analogy of "buckets" used for rate-limiting. Here is a
quick summary:
* This library implements the [Leaky Bucket algorithm](https://en.wikipedia.org/wiki/Leaky_bucket).
* It is named after the idea of representing some kind of fixed capacity -- like a network or service -- as a bucket.
* The bucket "leaks" at a constant rate. For web services, this represents the **ideal or permitted request rate**.
* The bucket is "filled" at an intermittent, unpredicatble rate, representing the **actual rate of requests**.
* When the bucket is "full", it will overflow, representing **canceled or delayed requests**.
### Rate limit exceptions
By default, a `BucketFullException` will be raised when a rate limit is exceeded.
The error contains a `meta_info` attribute with the following information:
* `identity`: The identity it received
* `rate`: The specific rate that has been exceeded
* `remaining_time`: The remaining time until the next request can be sent
Here's an example that will raise an exception on the 4th request:
```python
from pyrate_limiter import (Duration, RequestRate,
Limiter, BucketFullException)
rate = RequestRate(3, Duration.SECOND)
limiter = Limiter(rate)
for _ in range(4):
try:
limiter.try_acquire('vutran')
except BucketFullException as err:
print(err)
# Output: Bucket for vutran with Rate 3/1 is already full
print(err.meta_info)
# Output: {'identity': 'vutran', 'rate': '3/1', 'remaining_time': 2.9,
# 'error': 'Bucket for vutran with Rate 3/1 is already full'}
```
The rate part of the output is constructed as: `limit / interval`. On the above example, the limit
is 3 and the interval is 1, hence the `Rate 3/1`.
### Rate limit delays
You may want to simply slow down your requests to stay within the rate limits instead of canceling
them. In that case you can use the `delay` argument. Note that this is only available for
`Limiter.ratelimit()`:
```python
@limiter.ratelimit('identity', delay=True)
def my_function():
do_stuff()
```
If you exceed a rate limit with a long interval (daily, monthly, etc.), you may not want to delay
that long. In this case, you can set a `max_delay` (in seconds) that you are willing to wait in
between calls:
```python
@limiter.ratelimit('identity', delay=True, max_delay=360)
def my_function():
do_stuff()
```
In this case, calls may be delayed by at most 360 seconds to stay within the rate limits; any longer
than that, and a `BucketFullException` will be raised instead. Without specifying `max_delay`, calls
will be delayed as long as necessary.
## Additional usage options
Besides `Limiter.try_acquire()`, some additional usage options are available using `Limiter.ratelimit()`:
### Decorator
`Limiter.ratelimit()` can be used as a decorator:
```python
@limiter.ratelimit('identity')
def my_function():
do_stuff()
```
As with `Limiter.try_acquire()`, if calls to the wrapped function exceed the rate limits you
defined, a `BucketFullException` will be raised.
### Contextmanager
`Limiter.ratelimit()` also works as a contextmanager:
```python
def my_function():
with limiter.ratelimit('identity', delay=True):
do_stuff()
```
### Async decorator/contextmanager
`Limiter.ratelimit()` also support async functions, either as a decorator or contextmanager:
```python
@limiter.ratelimit('identity', delay=True)
async def my_function():
await do_stuff()
async def my_function():
async with limiter.ratelimit('identity'):
await do_stuff()
```
When delays are enabled for an async function, `asyncio.sleep()` will be used instead of `time.sleep()`.
## Backends
A few different bucket backends are available, which can be selected using the `bucket_class`
argument for `Limiter`. Any additional backend-specific arguments can be passed
via `bucket_kwargs`.
### Memory
The default bucket is stored in memory, backed by a `queue.Queue`. A list implementation is also available:
```python
from pyrate_limiter import Limiter, MemoryListBucket
limiter = Limiter(bucket_class=MemoryListBucket)
```
### SQLite
If you need to persist the bucket state, a SQLite backend is available.
By default it will store the state in the system temp directory, and you can use
the `path` argument to use a different location:
```python
from pyrate_limiter import Limiter, SQLiteBucket
limiter = Limiter(bucket_class=SQLiteBucket)
```
By default, the database will be stored in the system temp directory. You can specify a different
path via `bucket_kwargs`:
```python
limiter = Limiter(
bucket_class=SQLiteBucket,
bucket_kwargs={'path': '/path/to/db.sqlite'},
)
```
#### Concurrency
This backend is thread-safe.
If you want to use SQLite with multiprocessing, some additional protections are needed. For
these cases, a separate `FileLockSQLiteBucket` class is available. This requires installing the
[py-filelock](https://py-filelock.readthedocs.io) library.
```python
limiter = Limiter(bucket_class=FileLockSQLiteBucket)
```
### Redis
If you have a larger, distributed application, Redis is an ideal backend. This
option requires [redis-py](https://github.com/andymccurdy/redis-py).
Note that this backend requires a `bucket_name` argument, which will be used as a prefix for the
Redis keys created. This can be used to disambiguate between multiple services using the same Redis
instance with pyrate-limiter.
**Important**: you might want to consider adding `expire_time` for each buckets. In a scenario where some `identity` produces a request rate that is too sparsed, it is a good practice to expire the bucket which holds such identity's info to save memory.
```python
from pyrate_limiter import Limiter, RedisBucket, Duration, RequestRate
rates = [
RequestRate(5, 10 * Duration.SECOND),
RequestRate(8, 20 * Duration.SECOND),
]
limiter = Limiter(
*rates
bucket_class=RedisBucket,
bucket_kwargs={
'bucket_name':
'my_service',
'expire_time': rates[-1].interval,
},
)
```
#### Connection settings
If you need to pass additional connection settings, you can use the `redis_pool` bucket argument:
```python
from redis import ConnectionPool
redis_pool = ConnectionPool(host='localhost', port=6379, db=0)
rate = RequestRate(5, 10 * Duration.SECOND)
limiter = Limiter(
rate,
bucket_class=RedisBucket,
bucket_kwargs={'redis_pool': redis_pool, 'bucket_name': 'my_service'},
)
```
#### Redis clusters
Redis clusters are also supported, which requires
[redis-py-cluster](https://github.com/Grokzen/redis-py-cluster):
```python
from pyrate_limiter import Limiter, RedisClusterBucket
limiter = Limiter(bucket_class=RedisClusterBucket)
```
### Custom backends
If these don't suit your needs, you can also create your own bucket backend by extending `pyrate_limiter.bucket.AbstractBucket`.
## Additional features
### Time sources
By default, monotonic time is used, to ensure requests are always logged in the correct order.
You can specify a custom time source with the `time_function` argument. For example, you may want to
use the current UTC time for consistency across a distributed application using a Redis backend.
```python
from datetime import datetime
from pyrate_limiter import Duration, Limiter, RequestRate
rate = RequestRate(5, Duration.SECOND)
limiter_datetime = Limiter(rate, time_function=lambda: datetime.utcnow().timestamp())
```
Or simply use the basic `time.time()` function:
```python
from time import time
rate = RequestRate(5, Duration.SECOND)
limiter_time = Limiter(rate, time_function=time)
```
## Examples
To prove that pyrate-limiter is working as expected, here is a complete example to demonstrate
rate-limiting with delays:
```python
from time import perf_counter as time
from pyrate_limiter import Duration, Limiter, RequestRate
limiter = Limiter(RequestRate(5, Duration.SECOND))
n_requests = 27
@limiter.ratelimit("test", delay=True)
def limited_function(start_time):
print(f"t + {(time() - start_time):.5f}")
start_time = time()
for _ in range(n_requests):
limited_function(start_time)
print(f"Ran {n_requests} requests in {time() - start_time:.5f} seconds")
```
And an equivalent example for async usage:
```python
import asyncio
from time import perf_counter as time
from pyrate_limiter import Duration, Limiter, RequestRate
limiter = Limiter(RequestRate(5, Duration.SECOND))
n_requests = 27
@limiter.ratelimit("test", delay=True)
async def limited_function(start_time):
print(f"t + {(time() - start_time):.5f}")
async def test_ratelimit():
start_time = time()
tasks = [limited_function(start_time) for _ in range(n_requests)]
await asyncio.gather(*tasks)
print(f"Ran {n_requests} requests in {time() - start_time:.5f} seconds")
asyncio.run(test_ratelimit())
```
%package -n python3-pyrate-limiter
Summary: Python Rate-Limiter using Leaky-Bucket Algorithm
Provides: python-pyrate-limiter
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pyrate-limiter
<img align="left" width="95" height="120" src="docs/_static/logo.png">
# PyrateLimiter
The request rate limiter using Leaky-bucket algorithm.
Full project documentation can be found at [pyratelimiter.readthedocs.io](https://pyratelimiter.readthedocs.io).
[](https://badge.fury.io/py/pyrate-limiter)
[](https://pypi.org/project/pyrate-limiter)
[](https://codecov.io/gh/vutran1710/PyrateLimiter)
[](https://github.com/vutran1710/PyrateLimiter/graphs/commit-activity)
[](https://pypi.python.org/pypi/pyrate-limiter/)
<br>
## Contents
- [PyrateLimiter](#pyratelimiter)
- [Contents](#contents)
- [Features](#features)
- [Installation](#installation)
- [Basic usage](#basic-usage)
- [Defining rate limits](#defining-rate-limits)
- [Applying rate limits](#applying-rate-limits)
- [Identities](#identities)
- [Handling exceeded limits](#handling-exceeded-limits)
- [Bucket analogy](#bucket-analogy)
- [Rate limit exceptions](#rate-limit-exceptions)
- [Rate limit delays](#rate-limit-delays)
- [Additional usage options](#additional-usage-options)
- [Decorator](#decorator)
- [Contextmanager](#contextmanager)
- [Async decorator/contextmanager](#async-decoratorcontextmanager)
- [Backends](#backends)
- [Memory](#memory)
- [SQLite](#sqlite)
- [Redis](#redis)
- [Custom backends](#custom-backends)
- [Additional features](#additional-features)
- [Time sources](#time-sources)
- [Examples](#examples)
## Features
* Tracks any number of rate limits and intervals you want to define
* Independently tracks rate limits for multiple services or resources
* Handles exceeded rate limits by either raising errors or adding delays
* Several usage options including a normal function call, a decorator, or a contextmanager
* Async support
* Includes optional SQLite and Redis backends, which can be used to persist limit tracking across
multiple threads, processes, or application restarts
## Installation
Install using pip:
```
pip install pyrate-limiter
```
Or using conda:
```
conda install --channel conda-forge pyrate-limiter
```
## Basic usage
### Defining rate limits
Consider some public API (like LinkedIn, GitHub, etc.) that has rate limits like the following:
```
- 500 requests per hour
- 1000 requests per day
- 10000 requests per month
```
You can define these rates using the `RequestRate` class, and add them to a `Limiter`:
``` python
from pyrate_limiter import Duration, RequestRate, Limiter
hourly_rate = RequestRate(500, Duration.HOUR) # 500 requests per hour
daily_rate = RequestRate(1000, Duration.DAY) # 1000 requests per day
monthly_rate = RequestRate(10000, Duration.MONTH) # 10000 requests per month
limiter = Limiter(hourly_rate, daily_rate, monthly_rate)
```
or
``` python
from pyrate_limiter import Duration, RequestRate, Limiter
rate_limits = (
RequestRate(500, Duration.HOUR), # 500 requests per hour
RequestRate(1000, Duration.DAY), # 1000 requests per day
RequestRate(10000, Duration.MONTH), # 10000 requests per month
)
limiter = Limiter(*rate_limits)
```
Note that these rates need to be ordered by interval length; in other words, an hourly rate must
come before a daily rate, etc.
### Applying rate limits
Then, use `Limiter.try_acquire()` wherever you are making requests (or other rate-limited operations).
This will raise an exception if the rate limit is exceeded.
```python
import requests
def request_function():
limiter.try_acquire('identity')
requests.get('https://example.com')
while True:
request_function()
```
Alternatively, you can use `Limiter.ratelimit()` as a function decorator:
```python
@limiter.ratelimit('identity')
def request_function():
requests.get('https://example.com')
```
See [Additional usage options](#additional-usage-options) below for more details.
### Identities
Note that both `try_acquire()` and `ratelimit()` take one or more `identity` arguments. Typically this is
the name of the service or resource that is being rate-limited. This allows you to track rate limits
for these resources independently. For example, if you have a service that is rate-limited by user:
```python
def request_function(user_ids):
limiter.try_acquire(*user_ids)
for user_id in user_ids:
requests.get(f'https://example.com?user_id={user_id}')
```
## Handling exceeded limits
When a rate limit is exceeded, you have two options: raise an exception, or add delays.
### Bucket analogy
<img height="300" align="right" src="https://upload.wikimedia.org/wikipedia/commons/c/c4/Leaky_bucket_analogy.JPG">
At this point it's useful to introduce the analogy of "buckets" used for rate-limiting. Here is a
quick summary:
* This library implements the [Leaky Bucket algorithm](https://en.wikipedia.org/wiki/Leaky_bucket).
* It is named after the idea of representing some kind of fixed capacity -- like a network or service -- as a bucket.
* The bucket "leaks" at a constant rate. For web services, this represents the **ideal or permitted request rate**.
* The bucket is "filled" at an intermittent, unpredicatble rate, representing the **actual rate of requests**.
* When the bucket is "full", it will overflow, representing **canceled or delayed requests**.
### Rate limit exceptions
By default, a `BucketFullException` will be raised when a rate limit is exceeded.
The error contains a `meta_info` attribute with the following information:
* `identity`: The identity it received
* `rate`: The specific rate that has been exceeded
* `remaining_time`: The remaining time until the next request can be sent
Here's an example that will raise an exception on the 4th request:
```python
from pyrate_limiter import (Duration, RequestRate,
Limiter, BucketFullException)
rate = RequestRate(3, Duration.SECOND)
limiter = Limiter(rate)
for _ in range(4):
try:
limiter.try_acquire('vutran')
except BucketFullException as err:
print(err)
# Output: Bucket for vutran with Rate 3/1 is already full
print(err.meta_info)
# Output: {'identity': 'vutran', 'rate': '3/1', 'remaining_time': 2.9,
# 'error': 'Bucket for vutran with Rate 3/1 is already full'}
```
The rate part of the output is constructed as: `limit / interval`. On the above example, the limit
is 3 and the interval is 1, hence the `Rate 3/1`.
### Rate limit delays
You may want to simply slow down your requests to stay within the rate limits instead of canceling
them. In that case you can use the `delay` argument. Note that this is only available for
`Limiter.ratelimit()`:
```python
@limiter.ratelimit('identity', delay=True)
def my_function():
do_stuff()
```
If you exceed a rate limit with a long interval (daily, monthly, etc.), you may not want to delay
that long. In this case, you can set a `max_delay` (in seconds) that you are willing to wait in
between calls:
```python
@limiter.ratelimit('identity', delay=True, max_delay=360)
def my_function():
do_stuff()
```
In this case, calls may be delayed by at most 360 seconds to stay within the rate limits; any longer
than that, and a `BucketFullException` will be raised instead. Without specifying `max_delay`, calls
will be delayed as long as necessary.
## Additional usage options
Besides `Limiter.try_acquire()`, some additional usage options are available using `Limiter.ratelimit()`:
### Decorator
`Limiter.ratelimit()` can be used as a decorator:
```python
@limiter.ratelimit('identity')
def my_function():
do_stuff()
```
As with `Limiter.try_acquire()`, if calls to the wrapped function exceed the rate limits you
defined, a `BucketFullException` will be raised.
### Contextmanager
`Limiter.ratelimit()` also works as a contextmanager:
```python
def my_function():
with limiter.ratelimit('identity', delay=True):
do_stuff()
```
### Async decorator/contextmanager
`Limiter.ratelimit()` also support async functions, either as a decorator or contextmanager:
```python
@limiter.ratelimit('identity', delay=True)
async def my_function():
await do_stuff()
async def my_function():
async with limiter.ratelimit('identity'):
await do_stuff()
```
When delays are enabled for an async function, `asyncio.sleep()` will be used instead of `time.sleep()`.
## Backends
A few different bucket backends are available, which can be selected using the `bucket_class`
argument for `Limiter`. Any additional backend-specific arguments can be passed
via `bucket_kwargs`.
### Memory
The default bucket is stored in memory, backed by a `queue.Queue`. A list implementation is also available:
```python
from pyrate_limiter import Limiter, MemoryListBucket
limiter = Limiter(bucket_class=MemoryListBucket)
```
### SQLite
If you need to persist the bucket state, a SQLite backend is available.
By default it will store the state in the system temp directory, and you can use
the `path` argument to use a different location:
```python
from pyrate_limiter import Limiter, SQLiteBucket
limiter = Limiter(bucket_class=SQLiteBucket)
```
By default, the database will be stored in the system temp directory. You can specify a different
path via `bucket_kwargs`:
```python
limiter = Limiter(
bucket_class=SQLiteBucket,
bucket_kwargs={'path': '/path/to/db.sqlite'},
)
```
#### Concurrency
This backend is thread-safe.
If you want to use SQLite with multiprocessing, some additional protections are needed. For
these cases, a separate `FileLockSQLiteBucket` class is available. This requires installing the
[py-filelock](https://py-filelock.readthedocs.io) library.
```python
limiter = Limiter(bucket_class=FileLockSQLiteBucket)
```
### Redis
If you have a larger, distributed application, Redis is an ideal backend. This
option requires [redis-py](https://github.com/andymccurdy/redis-py).
Note that this backend requires a `bucket_name` argument, which will be used as a prefix for the
Redis keys created. This can be used to disambiguate between multiple services using the same Redis
instance with pyrate-limiter.
**Important**: you might want to consider adding `expire_time` for each buckets. In a scenario where some `identity` produces a request rate that is too sparsed, it is a good practice to expire the bucket which holds such identity's info to save memory.
```python
from pyrate_limiter import Limiter, RedisBucket, Duration, RequestRate
rates = [
RequestRate(5, 10 * Duration.SECOND),
RequestRate(8, 20 * Duration.SECOND),
]
limiter = Limiter(
*rates
bucket_class=RedisBucket,
bucket_kwargs={
'bucket_name':
'my_service',
'expire_time': rates[-1].interval,
},
)
```
#### Connection settings
If you need to pass additional connection settings, you can use the `redis_pool` bucket argument:
```python
from redis import ConnectionPool
redis_pool = ConnectionPool(host='localhost', port=6379, db=0)
rate = RequestRate(5, 10 * Duration.SECOND)
limiter = Limiter(
rate,
bucket_class=RedisBucket,
bucket_kwargs={'redis_pool': redis_pool, 'bucket_name': 'my_service'},
)
```
#### Redis clusters
Redis clusters are also supported, which requires
[redis-py-cluster](https://github.com/Grokzen/redis-py-cluster):
```python
from pyrate_limiter import Limiter, RedisClusterBucket
limiter = Limiter(bucket_class=RedisClusterBucket)
```
### Custom backends
If these don't suit your needs, you can also create your own bucket backend by extending `pyrate_limiter.bucket.AbstractBucket`.
## Additional features
### Time sources
By default, monotonic time is used, to ensure requests are always logged in the correct order.
You can specify a custom time source with the `time_function` argument. For example, you may want to
use the current UTC time for consistency across a distributed application using a Redis backend.
```python
from datetime import datetime
from pyrate_limiter import Duration, Limiter, RequestRate
rate = RequestRate(5, Duration.SECOND)
limiter_datetime = Limiter(rate, time_function=lambda: datetime.utcnow().timestamp())
```
Or simply use the basic `time.time()` function:
```python
from time import time
rate = RequestRate(5, Duration.SECOND)
limiter_time = Limiter(rate, time_function=time)
```
## Examples
To prove that pyrate-limiter is working as expected, here is a complete example to demonstrate
rate-limiting with delays:
```python
from time import perf_counter as time
from pyrate_limiter import Duration, Limiter, RequestRate
limiter = Limiter(RequestRate(5, Duration.SECOND))
n_requests = 27
@limiter.ratelimit("test", delay=True)
def limited_function(start_time):
print(f"t + {(time() - start_time):.5f}")
start_time = time()
for _ in range(n_requests):
limited_function(start_time)
print(f"Ran {n_requests} requests in {time() - start_time:.5f} seconds")
```
And an equivalent example for async usage:
```python
import asyncio
from time import perf_counter as time
from pyrate_limiter import Duration, Limiter, RequestRate
limiter = Limiter(RequestRate(5, Duration.SECOND))
n_requests = 27
@limiter.ratelimit("test", delay=True)
async def limited_function(start_time):
print(f"t + {(time() - start_time):.5f}")
async def test_ratelimit():
start_time = time()
tasks = [limited_function(start_time) for _ in range(n_requests)]
await asyncio.gather(*tasks)
print(f"Ran {n_requests} requests in {time() - start_time:.5f} seconds")
asyncio.run(test_ratelimit())
```
%package help
Summary: Development documents and examples for pyrate-limiter
Provides: python3-pyrate-limiter-doc
%description help
<img align="left" width="95" height="120" src="docs/_static/logo.png">
# PyrateLimiter
The request rate limiter using Leaky-bucket algorithm.
Full project documentation can be found at [pyratelimiter.readthedocs.io](https://pyratelimiter.readthedocs.io).
[](https://badge.fury.io/py/pyrate-limiter)
[](https://pypi.org/project/pyrate-limiter)
[](https://codecov.io/gh/vutran1710/PyrateLimiter)
[](https://github.com/vutran1710/PyrateLimiter/graphs/commit-activity)
[](https://pypi.python.org/pypi/pyrate-limiter/)
<br>
## Contents
- [PyrateLimiter](#pyratelimiter)
- [Contents](#contents)
- [Features](#features)
- [Installation](#installation)
- [Basic usage](#basic-usage)
- [Defining rate limits](#defining-rate-limits)
- [Applying rate limits](#applying-rate-limits)
- [Identities](#identities)
- [Handling exceeded limits](#handling-exceeded-limits)
- [Bucket analogy](#bucket-analogy)
- [Rate limit exceptions](#rate-limit-exceptions)
- [Rate limit delays](#rate-limit-delays)
- [Additional usage options](#additional-usage-options)
- [Decorator](#decorator)
- [Contextmanager](#contextmanager)
- [Async decorator/contextmanager](#async-decoratorcontextmanager)
- [Backends](#backends)
- [Memory](#memory)
- [SQLite](#sqlite)
- [Redis](#redis)
- [Custom backends](#custom-backends)
- [Additional features](#additional-features)
- [Time sources](#time-sources)
- [Examples](#examples)
## Features
* Tracks any number of rate limits and intervals you want to define
* Independently tracks rate limits for multiple services or resources
* Handles exceeded rate limits by either raising errors or adding delays
* Several usage options including a normal function call, a decorator, or a contextmanager
* Async support
* Includes optional SQLite and Redis backends, which can be used to persist limit tracking across
multiple threads, processes, or application restarts
## Installation
Install using pip:
```
pip install pyrate-limiter
```
Or using conda:
```
conda install --channel conda-forge pyrate-limiter
```
## Basic usage
### Defining rate limits
Consider some public API (like LinkedIn, GitHub, etc.) that has rate limits like the following:
```
- 500 requests per hour
- 1000 requests per day
- 10000 requests per month
```
You can define these rates using the `RequestRate` class, and add them to a `Limiter`:
``` python
from pyrate_limiter import Duration, RequestRate, Limiter
hourly_rate = RequestRate(500, Duration.HOUR) # 500 requests per hour
daily_rate = RequestRate(1000, Duration.DAY) # 1000 requests per day
monthly_rate = RequestRate(10000, Duration.MONTH) # 10000 requests per month
limiter = Limiter(hourly_rate, daily_rate, monthly_rate)
```
or
``` python
from pyrate_limiter import Duration, RequestRate, Limiter
rate_limits = (
RequestRate(500, Duration.HOUR), # 500 requests per hour
RequestRate(1000, Duration.DAY), # 1000 requests per day
RequestRate(10000, Duration.MONTH), # 10000 requests per month
)
limiter = Limiter(*rate_limits)
```
Note that these rates need to be ordered by interval length; in other words, an hourly rate must
come before a daily rate, etc.
### Applying rate limits
Then, use `Limiter.try_acquire()` wherever you are making requests (or other rate-limited operations).
This will raise an exception if the rate limit is exceeded.
```python
import requests
def request_function():
limiter.try_acquire('identity')
requests.get('https://example.com')
while True:
request_function()
```
Alternatively, you can use `Limiter.ratelimit()` as a function decorator:
```python
@limiter.ratelimit('identity')
def request_function():
requests.get('https://example.com')
```
See [Additional usage options](#additional-usage-options) below for more details.
### Identities
Note that both `try_acquire()` and `ratelimit()` take one or more `identity` arguments. Typically this is
the name of the service or resource that is being rate-limited. This allows you to track rate limits
for these resources independently. For example, if you have a service that is rate-limited by user:
```python
def request_function(user_ids):
limiter.try_acquire(*user_ids)
for user_id in user_ids:
requests.get(f'https://example.com?user_id={user_id}')
```
## Handling exceeded limits
When a rate limit is exceeded, you have two options: raise an exception, or add delays.
### Bucket analogy
<img height="300" align="right" src="https://upload.wikimedia.org/wikipedia/commons/c/c4/Leaky_bucket_analogy.JPG">
At this point it's useful to introduce the analogy of "buckets" used for rate-limiting. Here is a
quick summary:
* This library implements the [Leaky Bucket algorithm](https://en.wikipedia.org/wiki/Leaky_bucket).
* It is named after the idea of representing some kind of fixed capacity -- like a network or service -- as a bucket.
* The bucket "leaks" at a constant rate. For web services, this represents the **ideal or permitted request rate**.
* The bucket is "filled" at an intermittent, unpredicatble rate, representing the **actual rate of requests**.
* When the bucket is "full", it will overflow, representing **canceled or delayed requests**.
### Rate limit exceptions
By default, a `BucketFullException` will be raised when a rate limit is exceeded.
The error contains a `meta_info` attribute with the following information:
* `identity`: The identity it received
* `rate`: The specific rate that has been exceeded
* `remaining_time`: The remaining time until the next request can be sent
Here's an example that will raise an exception on the 4th request:
```python
from pyrate_limiter import (Duration, RequestRate,
Limiter, BucketFullException)
rate = RequestRate(3, Duration.SECOND)
limiter = Limiter(rate)
for _ in range(4):
try:
limiter.try_acquire('vutran')
except BucketFullException as err:
print(err)
# Output: Bucket for vutran with Rate 3/1 is already full
print(err.meta_info)
# Output: {'identity': 'vutran', 'rate': '3/1', 'remaining_time': 2.9,
# 'error': 'Bucket for vutran with Rate 3/1 is already full'}
```
The rate part of the output is constructed as: `limit / interval`. On the above example, the limit
is 3 and the interval is 1, hence the `Rate 3/1`.
### Rate limit delays
You may want to simply slow down your requests to stay within the rate limits instead of canceling
them. In that case you can use the `delay` argument. Note that this is only available for
`Limiter.ratelimit()`:
```python
@limiter.ratelimit('identity', delay=True)
def my_function():
do_stuff()
```
If you exceed a rate limit with a long interval (daily, monthly, etc.), you may not want to delay
that long. In this case, you can set a `max_delay` (in seconds) that you are willing to wait in
between calls:
```python
@limiter.ratelimit('identity', delay=True, max_delay=360)
def my_function():
do_stuff()
```
In this case, calls may be delayed by at most 360 seconds to stay within the rate limits; any longer
than that, and a `BucketFullException` will be raised instead. Without specifying `max_delay`, calls
will be delayed as long as necessary.
## Additional usage options
Besides `Limiter.try_acquire()`, some additional usage options are available using `Limiter.ratelimit()`:
### Decorator
`Limiter.ratelimit()` can be used as a decorator:
```python
@limiter.ratelimit('identity')
def my_function():
do_stuff()
```
As with `Limiter.try_acquire()`, if calls to the wrapped function exceed the rate limits you
defined, a `BucketFullException` will be raised.
### Contextmanager
`Limiter.ratelimit()` also works as a contextmanager:
```python
def my_function():
with limiter.ratelimit('identity', delay=True):
do_stuff()
```
### Async decorator/contextmanager
`Limiter.ratelimit()` also support async functions, either as a decorator or contextmanager:
```python
@limiter.ratelimit('identity', delay=True)
async def my_function():
await do_stuff()
async def my_function():
async with limiter.ratelimit('identity'):
await do_stuff()
```
When delays are enabled for an async function, `asyncio.sleep()` will be used instead of `time.sleep()`.
## Backends
A few different bucket backends are available, which can be selected using the `bucket_class`
argument for `Limiter`. Any additional backend-specific arguments can be passed
via `bucket_kwargs`.
### Memory
The default bucket is stored in memory, backed by a `queue.Queue`. A list implementation is also available:
```python
from pyrate_limiter import Limiter, MemoryListBucket
limiter = Limiter(bucket_class=MemoryListBucket)
```
### SQLite
If you need to persist the bucket state, a SQLite backend is available.
By default it will store the state in the system temp directory, and you can use
the `path` argument to use a different location:
```python
from pyrate_limiter import Limiter, SQLiteBucket
limiter = Limiter(bucket_class=SQLiteBucket)
```
By default, the database will be stored in the system temp directory. You can specify a different
path via `bucket_kwargs`:
```python
limiter = Limiter(
bucket_class=SQLiteBucket,
bucket_kwargs={'path': '/path/to/db.sqlite'},
)
```
#### Concurrency
This backend is thread-safe.
If you want to use SQLite with multiprocessing, some additional protections are needed. For
these cases, a separate `FileLockSQLiteBucket` class is available. This requires installing the
[py-filelock](https://py-filelock.readthedocs.io) library.
```python
limiter = Limiter(bucket_class=FileLockSQLiteBucket)
```
### Redis
If you have a larger, distributed application, Redis is an ideal backend. This
option requires [redis-py](https://github.com/andymccurdy/redis-py).
Note that this backend requires a `bucket_name` argument, which will be used as a prefix for the
Redis keys created. This can be used to disambiguate between multiple services using the same Redis
instance with pyrate-limiter.
**Important**: you might want to consider adding `expire_time` for each buckets. In a scenario where some `identity` produces a request rate that is too sparsed, it is a good practice to expire the bucket which holds such identity's info to save memory.
```python
from pyrate_limiter import Limiter, RedisBucket, Duration, RequestRate
rates = [
RequestRate(5, 10 * Duration.SECOND),
RequestRate(8, 20 * Duration.SECOND),
]
limiter = Limiter(
*rates
bucket_class=RedisBucket,
bucket_kwargs={
'bucket_name':
'my_service',
'expire_time': rates[-1].interval,
},
)
```
#### Connection settings
If you need to pass additional connection settings, you can use the `redis_pool` bucket argument:
```python
from redis import ConnectionPool
redis_pool = ConnectionPool(host='localhost', port=6379, db=0)
rate = RequestRate(5, 10 * Duration.SECOND)
limiter = Limiter(
rate,
bucket_class=RedisBucket,
bucket_kwargs={'redis_pool': redis_pool, 'bucket_name': 'my_service'},
)
```
#### Redis clusters
Redis clusters are also supported, which requires
[redis-py-cluster](https://github.com/Grokzen/redis-py-cluster):
```python
from pyrate_limiter import Limiter, RedisClusterBucket
limiter = Limiter(bucket_class=RedisClusterBucket)
```
### Custom backends
If these don't suit your needs, you can also create your own bucket backend by extending `pyrate_limiter.bucket.AbstractBucket`.
## Additional features
### Time sources
By default, monotonic time is used, to ensure requests are always logged in the correct order.
You can specify a custom time source with the `time_function` argument. For example, you may want to
use the current UTC time for consistency across a distributed application using a Redis backend.
```python
from datetime import datetime
from pyrate_limiter import Duration, Limiter, RequestRate
rate = RequestRate(5, Duration.SECOND)
limiter_datetime = Limiter(rate, time_function=lambda: datetime.utcnow().timestamp())
```
Or simply use the basic `time.time()` function:
```python
from time import time
rate = RequestRate(5, Duration.SECOND)
limiter_time = Limiter(rate, time_function=time)
```
## Examples
To prove that pyrate-limiter is working as expected, here is a complete example to demonstrate
rate-limiting with delays:
```python
from time import perf_counter as time
from pyrate_limiter import Duration, Limiter, RequestRate
limiter = Limiter(RequestRate(5, Duration.SECOND))
n_requests = 27
@limiter.ratelimit("test", delay=True)
def limited_function(start_time):
print(f"t + {(time() - start_time):.5f}")
start_time = time()
for _ in range(n_requests):
limited_function(start_time)
print(f"Ran {n_requests} requests in {time() - start_time:.5f} seconds")
```
And an equivalent example for async usage:
```python
import asyncio
from time import perf_counter as time
from pyrate_limiter import Duration, Limiter, RequestRate
limiter = Limiter(RequestRate(5, Duration.SECOND))
n_requests = 27
@limiter.ratelimit("test", delay=True)
async def limited_function(start_time):
print(f"t + {(time() - start_time):.5f}")
async def test_ratelimit():
start_time = time()
tasks = [limited_function(start_time) for _ in range(n_requests)]
await asyncio.gather(*tasks)
print(f"Ran {n_requests} requests in {time() - start_time:.5f} seconds")
asyncio.run(test_ratelimit())
```
%prep
%autosetup -n pyrate-limiter-2.10.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyrate-limiter -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 2.10.0-1
- Package Spec generated
|