1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
%global _empty_manifest_terminate_build 0
Name: python-pyrlprob
Version: 2.0.3
Release: 1
Summary: Train Gym-derived environments in Python/C++ through Ray RLlib
License: MIT License
URL: https://github.com/LorenzoFederici/pyrlprob
Source0: https://mirrors.aliyun.com/pypi/web/packages/87/90/b863fca4ffb5ea8dc8de9c8c27c15ff85488fa9c146413ea2a77659189cf/pyrlprob-2.0.3.tar.gz
BuildArch: noarch
%description
<p align="center">
<img align="center" src="https://github.com/LorenzoFederici/pyrlprob/blob/main/logo.png?raw=true" width="500" />
</p>
<div align="center">





</div>
PyRLprob is an open-source python library for training, evaluation, and postprocessing of [Gym](https://gym.openai.com/)-based environments, written in Python, through [Ray-RLlib](https://docs.ray.io/en/master/rllib.html) reinforcement learning library.
## Installation
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest stable release of pyRLprob, with all its dependencies:
```bash
pip install pyrlprob
```
To test if the package is installed correctly, run the following tests:
```python
from pyrlprob.tests import *
test_train_py()
test_train_eval_py()
```
If the code exits without errors, a folder named `results/` with the test results will be created in your current directory.
## User Guide
[Latest user guide](https://drive.google.com/file/d/1bNs2g50cxtmAGhhB1_Kf3hX8pdkbCplZ/view?usp=share_link).
## Credits
pyRLprob has been created by [Lorenzo Federici](https://github.com/LorenzoFederici) in 2021.
For any problem, clarification or suggestion, you can contact the author at [lorenzof@arizona.edu](mailto:lorenzof@arizona.edu).
## License
The package is under the [MIT](https://choosealicense.com/licenses/mit/) license.
%package -n python3-pyrlprob
Summary: Train Gym-derived environments in Python/C++ through Ray RLlib
Provides: python-pyrlprob
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pyrlprob
<p align="center">
<img align="center" src="https://github.com/LorenzoFederici/pyrlprob/blob/main/logo.png?raw=true" width="500" />
</p>
<div align="center">





</div>
PyRLprob is an open-source python library for training, evaluation, and postprocessing of [Gym](https://gym.openai.com/)-based environments, written in Python, through [Ray-RLlib](https://docs.ray.io/en/master/rllib.html) reinforcement learning library.
## Installation
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest stable release of pyRLprob, with all its dependencies:
```bash
pip install pyrlprob
```
To test if the package is installed correctly, run the following tests:
```python
from pyrlprob.tests import *
test_train_py()
test_train_eval_py()
```
If the code exits without errors, a folder named `results/` with the test results will be created in your current directory.
## User Guide
[Latest user guide](https://drive.google.com/file/d/1bNs2g50cxtmAGhhB1_Kf3hX8pdkbCplZ/view?usp=share_link).
## Credits
pyRLprob has been created by [Lorenzo Federici](https://github.com/LorenzoFederici) in 2021.
For any problem, clarification or suggestion, you can contact the author at [lorenzof@arizona.edu](mailto:lorenzof@arizona.edu).
## License
The package is under the [MIT](https://choosealicense.com/licenses/mit/) license.
%package help
Summary: Development documents and examples for pyrlprob
Provides: python3-pyrlprob-doc
%description help
<p align="center">
<img align="center" src="https://github.com/LorenzoFederici/pyrlprob/blob/main/logo.png?raw=true" width="500" />
</p>
<div align="center">





</div>
PyRLprob is an open-source python library for training, evaluation, and postprocessing of [Gym](https://gym.openai.com/)-based environments, written in Python, through [Ray-RLlib](https://docs.ray.io/en/master/rllib.html) reinforcement learning library.
## Installation
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest stable release of pyRLprob, with all its dependencies:
```bash
pip install pyrlprob
```
To test if the package is installed correctly, run the following tests:
```python
from pyrlprob.tests import *
test_train_py()
test_train_eval_py()
```
If the code exits without errors, a folder named `results/` with the test results will be created in your current directory.
## User Guide
[Latest user guide](https://drive.google.com/file/d/1bNs2g50cxtmAGhhB1_Kf3hX8pdkbCplZ/view?usp=share_link).
## Credits
pyRLprob has been created by [Lorenzo Federici](https://github.com/LorenzoFederici) in 2021.
For any problem, clarification or suggestion, you can contact the author at [lorenzof@arizona.edu](mailto:lorenzof@arizona.edu).
## License
The package is under the [MIT](https://choosealicense.com/licenses/mit/) license.
%prep
%autosetup -n pyrlprob-2.0.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyrlprob -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.3-1
- Package Spec generated
|