1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
%global _empty_manifest_terminate_build 0
Name: python-pyro-ppl
Version: 1.8.4
Release: 1
Summary: A Python library for probabilistic modeling and inference
License: Apache 2.0
URL: http://pyro.ai
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c0/af/f653e545519597d6c833136e88aae5d8bb81969cf83c6f3d2c34f0269456/pyro-ppl-1.8.4.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-opt-einsum
Requires: python3-pyro-api
Requires: python3-torch
Requires: python3-tqdm
Requires: python3-jupyter
Requires: python3-graphviz
Requires: python3-matplotlib
Requires: python3-torchvision
Requires: python3-visdom
Requires: python3-pandas
Requires: python3-pillow
Requires: python3-scikit-learn
Requires: python3-seaborn
Requires: python3-wget
Requires: python3-lap
Requires: python3-black
Requires: python3-flake8
Requires: python3-isort
Requires: python3-mypy
Requires: python3-nbformat
Requires: python3-nbsphinx
Requires: python3-nbstripout
Requires: python3-nbval
Requires: python3-ninja
Requires: python3-pypandoc
Requires: python3-pytest
Requires: python3-pytest-xdist
Requires: python3-scipy
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-yapf
Requires: python3-jupyter
Requires: python3-graphviz
Requires: python3-matplotlib
Requires: python3-torchvision
Requires: python3-visdom
Requires: python3-pandas
Requires: python3-pillow
Requires: python3-scikit-learn
Requires: python3-seaborn
Requires: python3-wget
Requires: python3-lap
Requires: python3-funsor[torch]
Requires: python3-horovod[pytorch]
Requires: python3-prettytable
Requires: python3-pytest-benchmark
Requires: python3-snakeviz
Requires: python3-jupyter
Requires: python3-graphviz
Requires: python3-matplotlib
Requires: python3-torchvision
Requires: python3-visdom
Requires: python3-pandas
Requires: python3-pillow
Requires: python3-scikit-learn
Requires: python3-seaborn
Requires: python3-wget
Requires: python3-lap
Requires: python3-black
Requires: python3-flake8
Requires: python3-nbval
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-scipy
%description
[Getting Started](http://pyro.ai/examples) |
[Documentation](http://docs.pyro.ai/) |
[Community](http://forum.pyro.ai/) |
[Contributing](https://github.com/pyro-ppl/pyro/blob/master/CONTRIBUTING.md)
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notably, it was designed with these principles in mind:
- **Universal**: Pyro is a universal PPL - it can represent any computable probability distribution.
- **Scalable**: Pyro scales to large data sets with little overhead compared to hand-written code.
- **Minimal**: Pyro is agile and maintainable. It is implemented with a small core of powerful, composable abstractions.
- **Flexible**: Pyro aims for automation when you want it, control when you need it. This is accomplished through high-level abstractions to express generative and inference models, while allowing experts easy-access to customize inference.
Pyro was originally developed at Uber AI and is now actively maintained by community contributors, including a dedicated team at the [Broad Institute](https://www.broadinstitute.org/).
In 2019, Pyro [became](https://www.linuxfoundation.org/press-release/2019/02/pyro-probabilistic-programming-language-becomes-newest-lf-deep-learning-project/) a project of the Linux Foundation, a neutral space for collaboration on open source software, open standards, open data, and open hardware.
For more information about the high level motivation for Pyro, check out our [launch blog post](http://eng.uber.com/pyro).
For additional blog posts, check out work on [experimental design](https://eng.uber.com/oed-pyro-release/) and
[time-to-event modeling](https://eng.uber.com/modeling-censored-time-to-event-data-using-pyro/) in Pyro.
## Installing
### Installing a stable Pyro release
**Install using pip:**
```sh
pip install pyro-ppl
```
**Install from source:**
```sh
git clone git@github.com:pyro-ppl/pyro.git
cd pyro
git checkout master # master is pinned to the latest release
pip install .
```
**Install with extra packages:**
To install the dependencies required to run the probabilistic models included in the `examples`/`tutorials` directories, please use the following command:
```sh
pip install pyro-ppl[extras]
```
Make sure that the models come from the same release version of the [Pyro source code](https://github.com/pyro-ppl/pyro/releases) as you have installed.
### Installing Pyro dev branch
For recent features you can install Pyro from source.
**Install Pyro using pip:**
```sh
pip install git+https://github.com/pyro-ppl/pyro.git
```
or, with the `extras` dependency to run the probabilistic models included in the `examples`/`tutorials` directories:
```sh
pip install git+https://github.com/pyro-ppl/pyro.git#egg=project[extras]
```
**Install Pyro from source:**
```sh
git clone https://github.com/pyro-ppl/pyro
cd pyro
pip install . # pip install .[extras] for running models in examples/tutorials
```
## Running Pyro from a Docker Container
Refer to the instructions [here](docker/README.md).
## Citation
If you use Pyro, please consider citing:
```
@article{bingham2019pyro,
author = {Eli Bingham and
Jonathan P. Chen and
Martin Jankowiak and
Fritz Obermeyer and
Neeraj Pradhan and
Theofanis Karaletsos and
Rohit Singh and
Paul A. Szerlip and
Paul Horsfall and
Noah D. Goodman},
title = {Pyro: Deep Universal Probabilistic Programming},
journal = {J. Mach. Learn. Res.},
volume = {20},
pages = {28:1--28:6},
year = {2019},
url = {http://jmlr.org/papers/v20/18-403.html}
}
```
%package -n python3-pyro-ppl
Summary: A Python library for probabilistic modeling and inference
Provides: python-pyro-ppl
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pyro-ppl
[Getting Started](http://pyro.ai/examples) |
[Documentation](http://docs.pyro.ai/) |
[Community](http://forum.pyro.ai/) |
[Contributing](https://github.com/pyro-ppl/pyro/blob/master/CONTRIBUTING.md)
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notably, it was designed with these principles in mind:
- **Universal**: Pyro is a universal PPL - it can represent any computable probability distribution.
- **Scalable**: Pyro scales to large data sets with little overhead compared to hand-written code.
- **Minimal**: Pyro is agile and maintainable. It is implemented with a small core of powerful, composable abstractions.
- **Flexible**: Pyro aims for automation when you want it, control when you need it. This is accomplished through high-level abstractions to express generative and inference models, while allowing experts easy-access to customize inference.
Pyro was originally developed at Uber AI and is now actively maintained by community contributors, including a dedicated team at the [Broad Institute](https://www.broadinstitute.org/).
In 2019, Pyro [became](https://www.linuxfoundation.org/press-release/2019/02/pyro-probabilistic-programming-language-becomes-newest-lf-deep-learning-project/) a project of the Linux Foundation, a neutral space for collaboration on open source software, open standards, open data, and open hardware.
For more information about the high level motivation for Pyro, check out our [launch blog post](http://eng.uber.com/pyro).
For additional blog posts, check out work on [experimental design](https://eng.uber.com/oed-pyro-release/) and
[time-to-event modeling](https://eng.uber.com/modeling-censored-time-to-event-data-using-pyro/) in Pyro.
## Installing
### Installing a stable Pyro release
**Install using pip:**
```sh
pip install pyro-ppl
```
**Install from source:**
```sh
git clone git@github.com:pyro-ppl/pyro.git
cd pyro
git checkout master # master is pinned to the latest release
pip install .
```
**Install with extra packages:**
To install the dependencies required to run the probabilistic models included in the `examples`/`tutorials` directories, please use the following command:
```sh
pip install pyro-ppl[extras]
```
Make sure that the models come from the same release version of the [Pyro source code](https://github.com/pyro-ppl/pyro/releases) as you have installed.
### Installing Pyro dev branch
For recent features you can install Pyro from source.
**Install Pyro using pip:**
```sh
pip install git+https://github.com/pyro-ppl/pyro.git
```
or, with the `extras` dependency to run the probabilistic models included in the `examples`/`tutorials` directories:
```sh
pip install git+https://github.com/pyro-ppl/pyro.git#egg=project[extras]
```
**Install Pyro from source:**
```sh
git clone https://github.com/pyro-ppl/pyro
cd pyro
pip install . # pip install .[extras] for running models in examples/tutorials
```
## Running Pyro from a Docker Container
Refer to the instructions [here](docker/README.md).
## Citation
If you use Pyro, please consider citing:
```
@article{bingham2019pyro,
author = {Eli Bingham and
Jonathan P. Chen and
Martin Jankowiak and
Fritz Obermeyer and
Neeraj Pradhan and
Theofanis Karaletsos and
Rohit Singh and
Paul A. Szerlip and
Paul Horsfall and
Noah D. Goodman},
title = {Pyro: Deep Universal Probabilistic Programming},
journal = {J. Mach. Learn. Res.},
volume = {20},
pages = {28:1--28:6},
year = {2019},
url = {http://jmlr.org/papers/v20/18-403.html}
}
```
%package help
Summary: Development documents and examples for pyro-ppl
Provides: python3-pyro-ppl-doc
%description help
[Getting Started](http://pyro.ai/examples) |
[Documentation](http://docs.pyro.ai/) |
[Community](http://forum.pyro.ai/) |
[Contributing](https://github.com/pyro-ppl/pyro/blob/master/CONTRIBUTING.md)
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notably, it was designed with these principles in mind:
- **Universal**: Pyro is a universal PPL - it can represent any computable probability distribution.
- **Scalable**: Pyro scales to large data sets with little overhead compared to hand-written code.
- **Minimal**: Pyro is agile and maintainable. It is implemented with a small core of powerful, composable abstractions.
- **Flexible**: Pyro aims for automation when you want it, control when you need it. This is accomplished through high-level abstractions to express generative and inference models, while allowing experts easy-access to customize inference.
Pyro was originally developed at Uber AI and is now actively maintained by community contributors, including a dedicated team at the [Broad Institute](https://www.broadinstitute.org/).
In 2019, Pyro [became](https://www.linuxfoundation.org/press-release/2019/02/pyro-probabilistic-programming-language-becomes-newest-lf-deep-learning-project/) a project of the Linux Foundation, a neutral space for collaboration on open source software, open standards, open data, and open hardware.
For more information about the high level motivation for Pyro, check out our [launch blog post](http://eng.uber.com/pyro).
For additional blog posts, check out work on [experimental design](https://eng.uber.com/oed-pyro-release/) and
[time-to-event modeling](https://eng.uber.com/modeling-censored-time-to-event-data-using-pyro/) in Pyro.
## Installing
### Installing a stable Pyro release
**Install using pip:**
```sh
pip install pyro-ppl
```
**Install from source:**
```sh
git clone git@github.com:pyro-ppl/pyro.git
cd pyro
git checkout master # master is pinned to the latest release
pip install .
```
**Install with extra packages:**
To install the dependencies required to run the probabilistic models included in the `examples`/`tutorials` directories, please use the following command:
```sh
pip install pyro-ppl[extras]
```
Make sure that the models come from the same release version of the [Pyro source code](https://github.com/pyro-ppl/pyro/releases) as you have installed.
### Installing Pyro dev branch
For recent features you can install Pyro from source.
**Install Pyro using pip:**
```sh
pip install git+https://github.com/pyro-ppl/pyro.git
```
or, with the `extras` dependency to run the probabilistic models included in the `examples`/`tutorials` directories:
```sh
pip install git+https://github.com/pyro-ppl/pyro.git#egg=project[extras]
```
**Install Pyro from source:**
```sh
git clone https://github.com/pyro-ppl/pyro
cd pyro
pip install . # pip install .[extras] for running models in examples/tutorials
```
## Running Pyro from a Docker Container
Refer to the instructions [here](docker/README.md).
## Citation
If you use Pyro, please consider citing:
```
@article{bingham2019pyro,
author = {Eli Bingham and
Jonathan P. Chen and
Martin Jankowiak and
Fritz Obermeyer and
Neeraj Pradhan and
Theofanis Karaletsos and
Rohit Singh and
Paul A. Szerlip and
Paul Horsfall and
Noah D. Goodman},
title = {Pyro: Deep Universal Probabilistic Programming},
journal = {J. Mach. Learn. Res.},
volume = {20},
pages = {28:1--28:6},
year = {2019},
url = {http://jmlr.org/papers/v20/18-403.html}
}
```
%prep
%autosetup -n pyro-ppl-1.8.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyro-ppl -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.4-1
- Package Spec generated
|