summaryrefslogtreecommitdiff
path: root/python-pyrush.spec
blob: 08ffbeb63895c891b95ffc76b420bb96ca3aa73d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
%global _empty_manifest_terminate_build 0
Name:		python-PyRuSH
Version:	1.0.8
Release:	1
Summary:	A fast implementation of RuSH (Rule-based sentence Segmenter using Hashing).
License:	Apache License
URL:		https://github.com/jianlins/PyRuSH
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/98/0d/be2458316bb1e0f25015768108ea87f020834ecd7c5bb2946d9becbef0a6/PyRuSH-1.0.8.tar.gz

Requires:	python3-Cython
Requires:	python3-setuptools
Requires:	python3-numpy
Requires:	python3-spacy
Requires:	python3-PyFastNER
Requires:	python3-quicksectx

%description
PyRuSH is the python implementation of `RuSH <https://github.com/jianlins/RuSH>`_ (**Ru** le-based sentence **S** egmenter using **H** ashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy.
If you wish to cite RuSH in a publication, please use:
Jianlin Shi ; Danielle Mowery ; Kristina M. Doing-Harris ; John F. Hurdle.RuSH: a Rule-based Segmentation Tool Using Hashing for Extremely Accurate Sentence Segmentation of Clinical Text. AMIA Annu Symp Proc. 2016: 1587.
The full text can be found `here <https://knowledge.amia.org/amia-63300-1.3360278/t005-1.3362920/f005-1.3362921/2495498-1.3363244/2495498-1.3363247?timeStamp=1479743941616>`_.

%package -n python3-PyRuSH
Summary:	A fast implementation of RuSH (Rule-based sentence Segmenter using Hashing).
Provides:	python-PyRuSH
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-PyRuSH
PyRuSH is the python implementation of `RuSH <https://github.com/jianlins/RuSH>`_ (**Ru** le-based sentence **S** egmenter using **H** ashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy.
If you wish to cite RuSH in a publication, please use:
Jianlin Shi ; Danielle Mowery ; Kristina M. Doing-Harris ; John F. Hurdle.RuSH: a Rule-based Segmentation Tool Using Hashing for Extremely Accurate Sentence Segmentation of Clinical Text. AMIA Annu Symp Proc. 2016: 1587.
The full text can be found `here <https://knowledge.amia.org/amia-63300-1.3360278/t005-1.3362920/f005-1.3362921/2495498-1.3363244/2495498-1.3363247?timeStamp=1479743941616>`_.

%package help
Summary:	Development documents and examples for PyRuSH
Provides:	python3-PyRuSH-doc
%description help
PyRuSH is the python implementation of `RuSH <https://github.com/jianlins/RuSH>`_ (**Ru** le-based sentence **S** egmenter using **H** ashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy.
If you wish to cite RuSH in a publication, please use:
Jianlin Shi ; Danielle Mowery ; Kristina M. Doing-Harris ; John F. Hurdle.RuSH: a Rule-based Segmentation Tool Using Hashing for Extremely Accurate Sentence Segmentation of Clinical Text. AMIA Annu Symp Proc. 2016: 1587.
The full text can be found `here <https://knowledge.amia.org/amia-63300-1.3360278/t005-1.3362920/f005-1.3362921/2495498-1.3363244/2495498-1.3363247?timeStamp=1479743941616>`_.

%prep
%autosetup -n PyRuSH-1.0.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-PyRuSH -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.8-1
- Package Spec generated