1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
%global _empty_manifest_terminate_build 0
Name: python-pyserini
Version: 0.21.0
Release: 1
Summary: A Python toolkit for reproducible information retrieval research with sparse and dense representations
License: Apache Software License
URL: https://github.com/castorini/pyserini
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/20/d2/d62af52f076f6b94f03dc082a35314b54deaeae28edfd799f8a0b692aade/pyserini-0.21.0.tar.gz
BuildArch: noarch
Requires: python3-Cython
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-pyjnius
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-tqdm
Requires: python3-transformers
Requires: python3-sentencepiece
Requires: python3-nmslib
Requires: python3-onnxruntime
Requires: python3-lightgbm
Requires: python3-spacy
Requires: python3-pyyaml
%description
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.
Retrieval using sparse representations is provided via integration with our group's [Anserini](http://anserini.io/) IR toolkit, which is built on Lucene.
Retrieval using dense representations is provided via integration with Facebook's [Faiss](https://github.com/facebookresearch/faiss) library.
Pyserini is primarily designed to provide effective, reproducible, and easy-to-use first-stage retrieval in a multi-stage ranking architecture.
Our toolkit is self-contained as a standard Python package and comes with queries, relevance judgments, pre-built indexes, and evaluation scripts for many commonly used IR test collections
## Installation
Install via PyPI:
```
pip install pyserini
```
Pyserini requires Python 3.8+ and Java 11 (due to its dependency on [Anserini](http://anserini.io/)).
Since dense retrieval depends on neural networks, Pyserini requires a more complex set of dependencies to use this feature.
A `pip` installation will automatically pull in the [🤗 Transformers library](https://github.com/huggingface/transformers) to satisfy the package requirements.
Pyserini also depends on [PyTorch](https://pytorch.org/) and [Faiss](https://github.com/facebookresearch/faiss), but since these packages may require platform-specific custom configuration, they are _not_ explicitly listed in the package requirements.
We leave the installation of these packages to you.
Refer to documentation in [our repo](https://github.com/castorini/pyserini/) for additional details.
## Usage
The `LuceneSearcher` class provides the entry point for sparse retrieval using bag-of-words representations.
Anserini supports a number of pre-built indexes for common collections that it'll automatically download for you and store in `~/.cache/pyserini/indexes/`.
Here's how to use a pre-built index for the [MS MARCO passage ranking task](http://www.msmarco.org/) and issue a query interactively (using BM25 ranking):
```python
from pyserini.search.lucene import LuceneSearcher
searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-passage')
hits = searcher.search('what is a lobster roll?')
for i in range(0, 10):
print(f'{i+1:2} {hits[i].docid:7} {hits[i].score:.5f}')
```
The results should be as follows:
```
1 7157707 11.00830
2 6034357 10.94310
3 5837606 10.81740
4 7157715 10.59820
5 6034350 10.48360
6 2900045 10.31190
7 7157713 10.12300
8 1584344 10.05290
9 533614 9.96350
10 6234461 9.92200
```
The `FaissSearcher` class provides the entry point for dense retrieval, and its usage is quite similar to `LuceneSearcher`.
The only additional thing we need to specify for dense retrieval is the query encoder.
```python
from pyserini.search.faiss import FaissSearcher, TctColBertQueryEncoder
encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')
searcher = FaissSearcher.from_prebuilt_index(
'msmarco-passage-tct_colbert-hnsw',
encoder
)
hits = searcher.search('what is a lobster roll')
for i in range(0, 10):
print(f'{i+1:2} {hits[i].docid:7} {hits[i].score:.5f}')
```
The results should be as follows:
```
1 7157710 70.53742
2 7157715 70.50040
3 7157707 70.13804
4 6034350 69.93666
5 6321969 69.62683
6 4112862 69.34587
7 5515474 69.21354
8 7157708 69.08416
9 6321974 69.06841
10 2920399 69.01737
```
For complete documentation, please refer to [our repo](https://github.com/castorini/pyserini/).
%package -n python3-pyserini
Summary: A Python toolkit for reproducible information retrieval research with sparse and dense representations
Provides: python-pyserini
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pyserini
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.
Retrieval using sparse representations is provided via integration with our group's [Anserini](http://anserini.io/) IR toolkit, which is built on Lucene.
Retrieval using dense representations is provided via integration with Facebook's [Faiss](https://github.com/facebookresearch/faiss) library.
Pyserini is primarily designed to provide effective, reproducible, and easy-to-use first-stage retrieval in a multi-stage ranking architecture.
Our toolkit is self-contained as a standard Python package and comes with queries, relevance judgments, pre-built indexes, and evaluation scripts for many commonly used IR test collections
## Installation
Install via PyPI:
```
pip install pyserini
```
Pyserini requires Python 3.8+ and Java 11 (due to its dependency on [Anserini](http://anserini.io/)).
Since dense retrieval depends on neural networks, Pyserini requires a more complex set of dependencies to use this feature.
A `pip` installation will automatically pull in the [🤗 Transformers library](https://github.com/huggingface/transformers) to satisfy the package requirements.
Pyserini also depends on [PyTorch](https://pytorch.org/) and [Faiss](https://github.com/facebookresearch/faiss), but since these packages may require platform-specific custom configuration, they are _not_ explicitly listed in the package requirements.
We leave the installation of these packages to you.
Refer to documentation in [our repo](https://github.com/castorini/pyserini/) for additional details.
## Usage
The `LuceneSearcher` class provides the entry point for sparse retrieval using bag-of-words representations.
Anserini supports a number of pre-built indexes for common collections that it'll automatically download for you and store in `~/.cache/pyserini/indexes/`.
Here's how to use a pre-built index for the [MS MARCO passage ranking task](http://www.msmarco.org/) and issue a query interactively (using BM25 ranking):
```python
from pyserini.search.lucene import LuceneSearcher
searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-passage')
hits = searcher.search('what is a lobster roll?')
for i in range(0, 10):
print(f'{i+1:2} {hits[i].docid:7} {hits[i].score:.5f}')
```
The results should be as follows:
```
1 7157707 11.00830
2 6034357 10.94310
3 5837606 10.81740
4 7157715 10.59820
5 6034350 10.48360
6 2900045 10.31190
7 7157713 10.12300
8 1584344 10.05290
9 533614 9.96350
10 6234461 9.92200
```
The `FaissSearcher` class provides the entry point for dense retrieval, and its usage is quite similar to `LuceneSearcher`.
The only additional thing we need to specify for dense retrieval is the query encoder.
```python
from pyserini.search.faiss import FaissSearcher, TctColBertQueryEncoder
encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')
searcher = FaissSearcher.from_prebuilt_index(
'msmarco-passage-tct_colbert-hnsw',
encoder
)
hits = searcher.search('what is a lobster roll')
for i in range(0, 10):
print(f'{i+1:2} {hits[i].docid:7} {hits[i].score:.5f}')
```
The results should be as follows:
```
1 7157710 70.53742
2 7157715 70.50040
3 7157707 70.13804
4 6034350 69.93666
5 6321969 69.62683
6 4112862 69.34587
7 5515474 69.21354
8 7157708 69.08416
9 6321974 69.06841
10 2920399 69.01737
```
For complete documentation, please refer to [our repo](https://github.com/castorini/pyserini/).
%package help
Summary: Development documents and examples for pyserini
Provides: python3-pyserini-doc
%description help
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.
Retrieval using sparse representations is provided via integration with our group's [Anserini](http://anserini.io/) IR toolkit, which is built on Lucene.
Retrieval using dense representations is provided via integration with Facebook's [Faiss](https://github.com/facebookresearch/faiss) library.
Pyserini is primarily designed to provide effective, reproducible, and easy-to-use first-stage retrieval in a multi-stage ranking architecture.
Our toolkit is self-contained as a standard Python package and comes with queries, relevance judgments, pre-built indexes, and evaluation scripts for many commonly used IR test collections
## Installation
Install via PyPI:
```
pip install pyserini
```
Pyserini requires Python 3.8+ and Java 11 (due to its dependency on [Anserini](http://anserini.io/)).
Since dense retrieval depends on neural networks, Pyserini requires a more complex set of dependencies to use this feature.
A `pip` installation will automatically pull in the [🤗 Transformers library](https://github.com/huggingface/transformers) to satisfy the package requirements.
Pyserini also depends on [PyTorch](https://pytorch.org/) and [Faiss](https://github.com/facebookresearch/faiss), but since these packages may require platform-specific custom configuration, they are _not_ explicitly listed in the package requirements.
We leave the installation of these packages to you.
Refer to documentation in [our repo](https://github.com/castorini/pyserini/) for additional details.
## Usage
The `LuceneSearcher` class provides the entry point for sparse retrieval using bag-of-words representations.
Anserini supports a number of pre-built indexes for common collections that it'll automatically download for you and store in `~/.cache/pyserini/indexes/`.
Here's how to use a pre-built index for the [MS MARCO passage ranking task](http://www.msmarco.org/) and issue a query interactively (using BM25 ranking):
```python
from pyserini.search.lucene import LuceneSearcher
searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-passage')
hits = searcher.search('what is a lobster roll?')
for i in range(0, 10):
print(f'{i+1:2} {hits[i].docid:7} {hits[i].score:.5f}')
```
The results should be as follows:
```
1 7157707 11.00830
2 6034357 10.94310
3 5837606 10.81740
4 7157715 10.59820
5 6034350 10.48360
6 2900045 10.31190
7 7157713 10.12300
8 1584344 10.05290
9 533614 9.96350
10 6234461 9.92200
```
The `FaissSearcher` class provides the entry point for dense retrieval, and its usage is quite similar to `LuceneSearcher`.
The only additional thing we need to specify for dense retrieval is the query encoder.
```python
from pyserini.search.faiss import FaissSearcher, TctColBertQueryEncoder
encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')
searcher = FaissSearcher.from_prebuilt_index(
'msmarco-passage-tct_colbert-hnsw',
encoder
)
hits = searcher.search('what is a lobster roll')
for i in range(0, 10):
print(f'{i+1:2} {hits[i].docid:7} {hits[i].score:.5f}')
```
The results should be as follows:
```
1 7157710 70.53742
2 7157715 70.50040
3 7157707 70.13804
4 6034350 69.93666
5 6321969 69.62683
6 4112862 69.34587
7 5515474 69.21354
8 7157708 69.08416
9 6321974 69.06841
10 2920399 69.01737
```
For complete documentation, please refer to [our repo](https://github.com/castorini/pyserini/).
%prep
%autosetup -n pyserini-0.21.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyserini -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.21.0-1
- Package Spec generated
|