summaryrefslogtreecommitdiff
path: root/python-pysseract.spec
blob: 9815f6daa4aaeaa90a687a8df385632f6b60c48e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
%global _empty_manifest_terminate_build 0
Name:		python-pysseract
Version:	1.3.1
Release:	1
Summary:	Python binding to Tesseract API
License:	MIT
URL:		https://github.com/xiahongze/pysseract
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/17/5f/d94d064e54254cef5bade2ab69168e2ebff6c6edfef8998ababaca01a667/pysseract-1.3.1.tar.gz
BuildArch:	noarch

Requires:	python3-m2r

%description
[![Build Status](https://travis-ci.org/xiahongze/pysseract.svg?branch=master)](https://travis-ci.org/xiahongze/pysseract)
[![](https://img.shields.io/badge/python-3.5+-blue.svg)](https://www.python.org/download/releases/3.5.0/)
[![](https://readthedocs.org/projects/pysseract/badge/?version=latest)](https://pysseract.readthedocs.io/en/latest/?badge=latest)
A Python binding to [Tesseract API](https://github.com/tesseract-ocr/tesseract). Tesseract is an open-source tool made available by Google for Optical Character Recognition (OCR) - that is, getting a computer to read the text in an image. Tesseract allows you to perform this task at a number of levels of granularity (one character at a time, one word at a time, and so on), by segmenting the page in a number of different ways (by assuming the whole page is one lump of text, or one line, or sparsely located throughout the source image), and with a number of different language models including ones you have built (pre-built models are available at https://github.com/tesseract-ocr/tessdata among other places).
Pip 19.3.1 or greater is required if you're installing the wheel for this package, otherwise just install the source. On Linux, if you install the wheel Tesseract comes included. You will however need to provide the Tesseract models. An example of how you might do this with English on a linux system is as follows:
```bash
curl -O https://raw.githubusercontent.com/tesseract-ocr/tessdata_fast/4.0.0/eng.traineddata
mkdir -p /usr/local/share/tessdata/ && sudo mv eng.traineddata /usr/local/share/tessdata/ 
```
The reason the file is being put in to `/usr/local/share/tessdata/` is because that is the default value for `TESSDATA_PREFIX`, an environment variable that Tesseract uses to locate model files. You're free to override the value of `TESSDATA_PREFIX`, of course. 
[Documentation](https://pysseract.readthedocs.io/en/latest/pysseract.html) is hosted on *readthedocs*.
# Basic usage
In order to just get all the text from an image and concatenate it into a string, run the following:
```python
import pysseract
t = pysseract.Pysseract()
t.SetImageFromPath('tests/001-helloworld.png')
print(t.utf8Text)
```
If instead you want to iterate through the text boxes found in an image at the TEXTLINE level (coarser-grained than WORD, but also lower-level than BLOCK), then you might run the following:
```python
with pysseract.Pysseract() as t:
    boxes = []
    text = []
    conf = []
    LEVEL = pysseract.PageIteratorLevel.TEXTLINE
    for box, text, confidence in t.IterAt(LEVEL):
        lines.append(text)
        boxes.append(box)
        confidence.append(conf)
```
A third possibility is that you may want to control how exactly the image is segmented. This is done before instantiating a `ResultIterator`, as follows:
```python
with pysseract.Pysseract() as t:
    t.pageSegMode = pysseract.PageSegMode.SINGLE_BLOCK
    t.SetImageFromPath("002-quick-fox.jpg")
    t.SetSourceResolution(70)
    boxes = []
    text = []
    conf = []
    LEVEL = pysseract.PageIteratorLevel.TEXTLINE
    for box, text, confidence in t.IterAt(LEVEL):
        lines.append(text)
        boxes.append(box)
        confidence.append(conf)
```
Finally, if you want to work with the low-level iterator built into Tesseract, the below code will work for you. This is primarily intended for people who want fine-grain control when searching through the results. For instance, if you want to look at the first paragraph, jump to the next word, then the next block after that, then the next symbol after that, you would use this approach:
```python
t = pysseract.Pysseract()
t.SetImageFromPath("002-quick-fox.jpg")
resIter = t.GetIterator()
boxes = []
lines = []
confidence = []
# First, look at the paragraph level
level = pysseract.PageIteratorLevel.PARA
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Now the next word after the paragraph we just looked at
level = pysseract.PageIteratorLevel.WORD
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Now the next block
level = pysseract.PageIteratorLevel.BLOCK
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Lastly, look at the next symbol after the block we just looked at
level = pysseract.PageIteratorLevel.SYMBOL
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
```
# Building the package
Requirements
- gcc/clang with at least c++11 support
- libtesseract, libtesseract-dev (equivalent on non-Debian/Ubuntu systems)
- pybind11>=2.2
```bash
python3 setup.py build install test
```
# Building the documentation
```bash
pip install sphinx sphinx_rtd_theme m2r
python3 setup.py build_sphinx
```
You should find the generated html in `build/sphinx`.
# Contribute
Look at [Tesseract BaseAPI](https://github.com/tesseract-ocr/tesseract/blob/master/src/api/baseapi.cpp)
and import those functions of interest to `pymodule.cpp`.
Please write a brief description in your wrapper function like those already in `pymodule.cpp`.
# Reference
- [basic pybind11](https://pybind11.readthedocs.io/en/master/basics.html)
- [class based pybind11](https://pybind11.readthedocs.io/en/master/classes.html)
- [compiling with pybind11](https://pybind11.readthedocs.io/en/master/compiling.html)
# LICENSE
MIT

%package -n python3-pysseract
Summary:	Python binding to Tesseract API
Provides:	python-pysseract
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pysseract
[![Build Status](https://travis-ci.org/xiahongze/pysseract.svg?branch=master)](https://travis-ci.org/xiahongze/pysseract)
[![](https://img.shields.io/badge/python-3.5+-blue.svg)](https://www.python.org/download/releases/3.5.0/)
[![](https://readthedocs.org/projects/pysseract/badge/?version=latest)](https://pysseract.readthedocs.io/en/latest/?badge=latest)
A Python binding to [Tesseract API](https://github.com/tesseract-ocr/tesseract). Tesseract is an open-source tool made available by Google for Optical Character Recognition (OCR) - that is, getting a computer to read the text in an image. Tesseract allows you to perform this task at a number of levels of granularity (one character at a time, one word at a time, and so on), by segmenting the page in a number of different ways (by assuming the whole page is one lump of text, or one line, or sparsely located throughout the source image), and with a number of different language models including ones you have built (pre-built models are available at https://github.com/tesseract-ocr/tessdata among other places).
Pip 19.3.1 or greater is required if you're installing the wheel for this package, otherwise just install the source. On Linux, if you install the wheel Tesseract comes included. You will however need to provide the Tesseract models. An example of how you might do this with English on a linux system is as follows:
```bash
curl -O https://raw.githubusercontent.com/tesseract-ocr/tessdata_fast/4.0.0/eng.traineddata
mkdir -p /usr/local/share/tessdata/ && sudo mv eng.traineddata /usr/local/share/tessdata/ 
```
The reason the file is being put in to `/usr/local/share/tessdata/` is because that is the default value for `TESSDATA_PREFIX`, an environment variable that Tesseract uses to locate model files. You're free to override the value of `TESSDATA_PREFIX`, of course. 
[Documentation](https://pysseract.readthedocs.io/en/latest/pysseract.html) is hosted on *readthedocs*.
# Basic usage
In order to just get all the text from an image and concatenate it into a string, run the following:
```python
import pysseract
t = pysseract.Pysseract()
t.SetImageFromPath('tests/001-helloworld.png')
print(t.utf8Text)
```
If instead you want to iterate through the text boxes found in an image at the TEXTLINE level (coarser-grained than WORD, but also lower-level than BLOCK), then you might run the following:
```python
with pysseract.Pysseract() as t:
    boxes = []
    text = []
    conf = []
    LEVEL = pysseract.PageIteratorLevel.TEXTLINE
    for box, text, confidence in t.IterAt(LEVEL):
        lines.append(text)
        boxes.append(box)
        confidence.append(conf)
```
A third possibility is that you may want to control how exactly the image is segmented. This is done before instantiating a `ResultIterator`, as follows:
```python
with pysseract.Pysseract() as t:
    t.pageSegMode = pysseract.PageSegMode.SINGLE_BLOCK
    t.SetImageFromPath("002-quick-fox.jpg")
    t.SetSourceResolution(70)
    boxes = []
    text = []
    conf = []
    LEVEL = pysseract.PageIteratorLevel.TEXTLINE
    for box, text, confidence in t.IterAt(LEVEL):
        lines.append(text)
        boxes.append(box)
        confidence.append(conf)
```
Finally, if you want to work with the low-level iterator built into Tesseract, the below code will work for you. This is primarily intended for people who want fine-grain control when searching through the results. For instance, if you want to look at the first paragraph, jump to the next word, then the next block after that, then the next symbol after that, you would use this approach:
```python
t = pysseract.Pysseract()
t.SetImageFromPath("002-quick-fox.jpg")
resIter = t.GetIterator()
boxes = []
lines = []
confidence = []
# First, look at the paragraph level
level = pysseract.PageIteratorLevel.PARA
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Now the next word after the paragraph we just looked at
level = pysseract.PageIteratorLevel.WORD
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Now the next block
level = pysseract.PageIteratorLevel.BLOCK
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Lastly, look at the next symbol after the block we just looked at
level = pysseract.PageIteratorLevel.SYMBOL
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
```
# Building the package
Requirements
- gcc/clang with at least c++11 support
- libtesseract, libtesseract-dev (equivalent on non-Debian/Ubuntu systems)
- pybind11>=2.2
```bash
python3 setup.py build install test
```
# Building the documentation
```bash
pip install sphinx sphinx_rtd_theme m2r
python3 setup.py build_sphinx
```
You should find the generated html in `build/sphinx`.
# Contribute
Look at [Tesseract BaseAPI](https://github.com/tesseract-ocr/tesseract/blob/master/src/api/baseapi.cpp)
and import those functions of interest to `pymodule.cpp`.
Please write a brief description in your wrapper function like those already in `pymodule.cpp`.
# Reference
- [basic pybind11](https://pybind11.readthedocs.io/en/master/basics.html)
- [class based pybind11](https://pybind11.readthedocs.io/en/master/classes.html)
- [compiling with pybind11](https://pybind11.readthedocs.io/en/master/compiling.html)
# LICENSE
MIT

%package help
Summary:	Development documents and examples for pysseract
Provides:	python3-pysseract-doc
%description help
[![Build Status](https://travis-ci.org/xiahongze/pysseract.svg?branch=master)](https://travis-ci.org/xiahongze/pysseract)
[![](https://img.shields.io/badge/python-3.5+-blue.svg)](https://www.python.org/download/releases/3.5.0/)
[![](https://readthedocs.org/projects/pysseract/badge/?version=latest)](https://pysseract.readthedocs.io/en/latest/?badge=latest)
A Python binding to [Tesseract API](https://github.com/tesseract-ocr/tesseract). Tesseract is an open-source tool made available by Google for Optical Character Recognition (OCR) - that is, getting a computer to read the text in an image. Tesseract allows you to perform this task at a number of levels of granularity (one character at a time, one word at a time, and so on), by segmenting the page in a number of different ways (by assuming the whole page is one lump of text, or one line, or sparsely located throughout the source image), and with a number of different language models including ones you have built (pre-built models are available at https://github.com/tesseract-ocr/tessdata among other places).
Pip 19.3.1 or greater is required if you're installing the wheel for this package, otherwise just install the source. On Linux, if you install the wheel Tesseract comes included. You will however need to provide the Tesseract models. An example of how you might do this with English on a linux system is as follows:
```bash
curl -O https://raw.githubusercontent.com/tesseract-ocr/tessdata_fast/4.0.0/eng.traineddata
mkdir -p /usr/local/share/tessdata/ && sudo mv eng.traineddata /usr/local/share/tessdata/ 
```
The reason the file is being put in to `/usr/local/share/tessdata/` is because that is the default value for `TESSDATA_PREFIX`, an environment variable that Tesseract uses to locate model files. You're free to override the value of `TESSDATA_PREFIX`, of course. 
[Documentation](https://pysseract.readthedocs.io/en/latest/pysseract.html) is hosted on *readthedocs*.
# Basic usage
In order to just get all the text from an image and concatenate it into a string, run the following:
```python
import pysseract
t = pysseract.Pysseract()
t.SetImageFromPath('tests/001-helloworld.png')
print(t.utf8Text)
```
If instead you want to iterate through the text boxes found in an image at the TEXTLINE level (coarser-grained than WORD, but also lower-level than BLOCK), then you might run the following:
```python
with pysseract.Pysseract() as t:
    boxes = []
    text = []
    conf = []
    LEVEL = pysseract.PageIteratorLevel.TEXTLINE
    for box, text, confidence in t.IterAt(LEVEL):
        lines.append(text)
        boxes.append(box)
        confidence.append(conf)
```
A third possibility is that you may want to control how exactly the image is segmented. This is done before instantiating a `ResultIterator`, as follows:
```python
with pysseract.Pysseract() as t:
    t.pageSegMode = pysseract.PageSegMode.SINGLE_BLOCK
    t.SetImageFromPath("002-quick-fox.jpg")
    t.SetSourceResolution(70)
    boxes = []
    text = []
    conf = []
    LEVEL = pysseract.PageIteratorLevel.TEXTLINE
    for box, text, confidence in t.IterAt(LEVEL):
        lines.append(text)
        boxes.append(box)
        confidence.append(conf)
```
Finally, if you want to work with the low-level iterator built into Tesseract, the below code will work for you. This is primarily intended for people who want fine-grain control when searching through the results. For instance, if you want to look at the first paragraph, jump to the next word, then the next block after that, then the next symbol after that, you would use this approach:
```python
t = pysseract.Pysseract()
t.SetImageFromPath("002-quick-fox.jpg")
resIter = t.GetIterator()
boxes = []
lines = []
confidence = []
# First, look at the paragraph level
level = pysseract.PageIteratorLevel.PARA
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Now the next word after the paragraph we just looked at
level = pysseract.PageIteratorLevel.WORD
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Now the next block
level = pysseract.PageIteratorLevel.BLOCK
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
# Lastly, look at the next symbol after the block we just looked at
level = pysseract.PageIteratorLevel.SYMBOL
resIter.Next(level)
boxes.append(resIter.BoundingBox(level))
lines.append(resIter.GetUTF8Text(level))
confidence.append(resIter.Confidence(level))
```
# Building the package
Requirements
- gcc/clang with at least c++11 support
- libtesseract, libtesseract-dev (equivalent on non-Debian/Ubuntu systems)
- pybind11>=2.2
```bash
python3 setup.py build install test
```
# Building the documentation
```bash
pip install sphinx sphinx_rtd_theme m2r
python3 setup.py build_sphinx
```
You should find the generated html in `build/sphinx`.
# Contribute
Look at [Tesseract BaseAPI](https://github.com/tesseract-ocr/tesseract/blob/master/src/api/baseapi.cpp)
and import those functions of interest to `pymodule.cpp`.
Please write a brief description in your wrapper function like those already in `pymodule.cpp`.
# Reference
- [basic pybind11](https://pybind11.readthedocs.io/en/master/basics.html)
- [class based pybind11](https://pybind11.readthedocs.io/en/master/classes.html)
- [compiling with pybind11](https://pybind11.readthedocs.io/en/master/compiling.html)
# LICENSE
MIT

%prep
%autosetup -n pysseract-1.3.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pysseract -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.1-1
- Package Spec generated