summaryrefslogtreecommitdiff
path: root/python-pystan.spec
blob: 626f9ab8b99274536ae3a95c5a3b2996f2f05cad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
%global _empty_manifest_terminate_build 0
Name:		python-pystan
Version:	3.6.0
Release:	1
Summary:	Python interface to Stan, a package for Bayesian inference
License:	ISC
URL:		https://mc-stan.org
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b4/34/c82f306600df2812996689d1d3fc5acb5fa1fd627ad895ede29cd3ee9605/pystan-3.6.0.tar.gz
BuildArch:	noarch

Requires:	python3-aiohttp
Requires:	python3-httpstan
Requires:	python3-pysimdjson
Requires:	python3-numpy
Requires:	python3-clikit
Requires:	python3-setuptools

%description
Install PyStan with ``pip install pystan``. PyStan runs on Linux and macOS. You will also need a C++ compiler such as gcc ≥9.0 or clang ≥10.0.
The following block of code shows how to use PyStan with a model which studied coaching effects across eight schools (see Section 5.5 of Gelman et al (2003)). This hierarchical model is often called the "eight schools" model.
    import stan
    schools_code = """
    data {
      int<lower=0> J;         // number of schools
      real y[J];              // estimated treatment effects
      real<lower=0> sigma[J]; // standard error of effect estimates
    }
    parameters {
      real mu;                // population treatment effect
      real<lower=0> tau;      // standard deviation in treatment effects
      vector[J] eta;          // unscaled deviation from mu by school
    }
    transformed parameters {
      vector[J] theta = mu + tau * eta;        // school treatment effects
    }
    model {
      target += normal_lpdf(eta | 0, 1);       // prior log-density
      target += normal_lpdf(y | theta, sigma); // log-likelihood
    }
    """
    schools_data = {"J": 8,
                    "y": [28,  8, -3,  7, -1,  1, 18, 12],
                    "sigma": [15, 10, 16, 11,  9, 11, 10, 18]}
    posterior = stan.build(schools_code, data=schools_data)
    fit = posterior.sample(num_chains=4, num_samples=1000)
    eta = fit["eta"]  # array with shape (8, 4000)
    df = fit.to_frame()  # pandas `DataFrame`

%package -n python3-pystan
Summary:	Python interface to Stan, a package for Bayesian inference
Provides:	python-pystan
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pystan
Install PyStan with ``pip install pystan``. PyStan runs on Linux and macOS. You will also need a C++ compiler such as gcc ≥9.0 or clang ≥10.0.
The following block of code shows how to use PyStan with a model which studied coaching effects across eight schools (see Section 5.5 of Gelman et al (2003)). This hierarchical model is often called the "eight schools" model.
    import stan
    schools_code = """
    data {
      int<lower=0> J;         // number of schools
      real y[J];              // estimated treatment effects
      real<lower=0> sigma[J]; // standard error of effect estimates
    }
    parameters {
      real mu;                // population treatment effect
      real<lower=0> tau;      // standard deviation in treatment effects
      vector[J] eta;          // unscaled deviation from mu by school
    }
    transformed parameters {
      vector[J] theta = mu + tau * eta;        // school treatment effects
    }
    model {
      target += normal_lpdf(eta | 0, 1);       // prior log-density
      target += normal_lpdf(y | theta, sigma); // log-likelihood
    }
    """
    schools_data = {"J": 8,
                    "y": [28,  8, -3,  7, -1,  1, 18, 12],
                    "sigma": [15, 10, 16, 11,  9, 11, 10, 18]}
    posterior = stan.build(schools_code, data=schools_data)
    fit = posterior.sample(num_chains=4, num_samples=1000)
    eta = fit["eta"]  # array with shape (8, 4000)
    df = fit.to_frame()  # pandas `DataFrame`

%package help
Summary:	Development documents and examples for pystan
Provides:	python3-pystan-doc
%description help
Install PyStan with ``pip install pystan``. PyStan runs on Linux and macOS. You will also need a C++ compiler such as gcc ≥9.0 or clang ≥10.0.
The following block of code shows how to use PyStan with a model which studied coaching effects across eight schools (see Section 5.5 of Gelman et al (2003)). This hierarchical model is often called the "eight schools" model.
    import stan
    schools_code = """
    data {
      int<lower=0> J;         // number of schools
      real y[J];              // estimated treatment effects
      real<lower=0> sigma[J]; // standard error of effect estimates
    }
    parameters {
      real mu;                // population treatment effect
      real<lower=0> tau;      // standard deviation in treatment effects
      vector[J] eta;          // unscaled deviation from mu by school
    }
    transformed parameters {
      vector[J] theta = mu + tau * eta;        // school treatment effects
    }
    model {
      target += normal_lpdf(eta | 0, 1);       // prior log-density
      target += normal_lpdf(y | theta, sigma); // log-likelihood
    }
    """
    schools_data = {"J": 8,
                    "y": [28,  8, -3,  7, -1,  1, 18, 12],
                    "sigma": [15, 10, 16, 11,  9, 11, 10, 18]}
    posterior = stan.build(schools_code, data=schools_data)
    fit = posterior.sample(num_chains=4, num_samples=1000)
    eta = fit["eta"]  # array with shape (8, 4000)
    df = fit.to_frame()  # pandas `DataFrame`

%prep
%autosetup -n pystan-3.6.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pystan -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 3.6.0-1
- Package Spec generated