1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
%global _empty_manifest_terminate_build 0
Name: python-pytorch-adapt
Version: 0.0.83
Release: 1
Summary: Domain adaptation made easy. Fully featured, modular, and customizable.
License: MIT License
URL: https://github.com/KevinMusgrave/pytorch-adapt
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/db/e5/96520821bbb5f2f38d3f77458e9b47e155b37a35e1e577b34f6dd5a55a49/pytorch-adapt-0.0.83.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-torchmetrics
Requires: python3-pytorch-metric-learning
Requires: python3-albumentations
Requires: python3-black
Requires: python3-isort
Requires: python3-nbqa
Requires: python3-flake8
Requires: python3-mkdocs-material
Requires: python3-mkdocstrings[python]
Requires: python3-griffe
Requires: python3-mkdocs-gen-files
Requires: python3-mkdocs-section-index
Requires: python3-mkdocs-literate-nav
Requires: python3-pytorch-ignite
Requires: python3-pytorch-lightning
Requires: python3-record-keeper
Requires: python3-tensorboard
Requires: python3-timm
%description
<h1>
<a href="https://github.com/KevinMusgrave/pytorch-adapt">
<img alt="PyTorch Adapt" src="https://github.com/KevinMusgrave/pytorch-adapt/blob/main/docs/imgs/Logo.png">
</a>
</h1>
<p align="center">
<a href="https://badge.fury.io/py/pytorch-adapt">
<img alt="PyPi version" src="https://badge.fury.io/py/pytorch-adapt.svg">
</a>
</p>
## Why use PyTorch Adapt?
PyTorch Adapt provides tools for **domain adaptation**, a type of machine learning algorithm that repurposes existing models to work in new domains. This library is:
### 1. **Fully featured**
Build a complete train/val domain adaptation pipeline in a few lines of code.
### 2. **Modular**
Use just the parts that suit your needs, whether it's the algorithms, loss functions, or validation methods.
### 3. **Highly customizable**
Customize and combine complex algorithms with ease.
### 4. **Compatible with frameworks**
Add additional functionality to your code by using one of the framework wrappers. Converting an algorithm into a PyTorch Lightning module is as simple as wrapping it with ```Lightning```.
## Documentation
- [**Documentation**](https://kevinmusgrave.github.io/pytorch-adapt/)
- [**Installation instructions**](https://github.com/KevinMusgrave/pytorch-adapt#installation)
- [**List of papers implemented**](https://kevinmusgrave.github.io/pytorch-adapt/algorithms/uda)
## Examples
See the **[examples folder](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/README.md)** for notebooks you can download or run on Google Colab.
## How to...
### Use in vanilla PyTorch
```python
from pytorch_adapt.hooks import DANNHook
from pytorch_adapt.utils.common_functions import batch_to_device
# Assuming that models, optimizers, and dataloader are already created.
hook = DANNHook(optimizers)
for data in tqdm(dataloader):
data = batch_to_device(data, device)
# Optimization is done inside the hook.
# The returned loss is for logging.
_, loss = hook({**models, **data})
```
### Build complex algorithms
Let's customize ```DANNHook``` with:
- minimum class confusion
- virtual adversarial training
```python
from pytorch_adapt.hooks import MCCHook, VATHook
# G and C are the Generator and Classifier models
G, C = models["G"], models["C"]
misc = {"combined_model": torch.nn.Sequential(G, C)}
hook = DANNHook(optimizers, post_g=[MCCHook(), VATHook()])
for data in tqdm(dataloader):
data = batch_to_device(data, device)
_, loss = hook({**models, **data, **misc})
```
### Wrap with your favorite PyTorch framework
First, set up the adapter and dataloaders:
```python
from pytorch_adapt.adapters import DANN
from pytorch_adapt.containers import Models
from pytorch_adapt.datasets import DataloaderCreator
models_cont = Models(models)
adapter = DANN(models=models_cont)
dc = DataloaderCreator(num_workers=2)
dataloaders = dc(**datasets)
```
Then use a framework wrapper:
#### PyTorch Lightning
```python
import pytorch_lightning as pl
from pytorch_adapt.frameworks.lightning import Lightning
L_adapter = Lightning(adapter)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, dataloaders["train"])
```
#### PyTorch Ignite
```python
trainer = Ignite(adapter)
trainer.run(datasets, dataloader_creator=dc)
```
### Check your model's performance
You can do this in vanilla PyTorch:
```python
from pytorch_adapt.validators import SNDValidator
# Assuming predictions have been collected
target_train = {"preds": preds}
validator = SNDValidator()
score = validator(target_train=target_train)
```
You can also do this during training with a framework wrapper:
#### PyTorch Lightning
```python
from pytorch_adapt.frameworks.utils import filter_datasets
validator = SNDValidator()
dataloaders = dc(**filter_datasets(datasets, validator))
train_loader = dataloaders.pop("train")
L_adapter = Lightning(adapter, validator=validator)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, train_loader, list(dataloaders.values()))
```
#### Pytorch Ignite
```python
from pytorch_adapt.validators import ScoreHistory
validator = ScoreHistory(SNDValidator())
trainer = Ignite(adapter, validator=validator)
trainer.run(datasets, dataloader_creator=dc)
```
### Run the above examples
See [this notebook](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/other/ReadmeExamples.ipynb) and [the examples page](https://github.com/KevinMusgrave/pytorch-adapt/tree/main/examples/) for other notebooks.
## Installation
### Pip
```
pip install pytorch-adapt
```
**To get the latest dev version**:
```
pip install pytorch-adapt --pre
```
**To use ```pytorch_adapt.frameworks.lightning```**:
```
pip install pytorch-adapt[lightning]
```
**To use ```pytorch_adapt.frameworks.ignite```**:
```
pip install pytorch-adapt[ignite]
```
### Conda
Coming soon...
### Dependencies
See [setup.py](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/setup.py)
## Acknowledgements
### Contributors
Thanks to the contributors who made pull requests!
| Contributor | Highlights |
| -- | -- |
| [deepseek-eoghan](https://github.com/deepseek-eoghan) | Improved the TargetDataset class |
### Advisors
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/).
### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.
### Citing this library
If you'd like to cite pytorch-adapt in your paper, you can refer to [this paper](https://arxiv.org/abs/2211.15673) by copy-pasting this bibtex reference:
```latex
@article{Musgrave2022PyTorchA,
title={PyTorch Adapt},
author={Kevin Musgrave and Serge J. Belongie and Ser Nam Lim},
journal={ArXiv},
year={2022},
volume={abs/2211.15673}
}
```
### Code references (in no particular order)
- https://github.com/wgchang/DSBN
- https://github.com/jihanyang/AFN
- https://github.com/thuml/Versatile-Domain-Adaptation
- https://github.com/tim-learn/ATDOC
- https://github.com/thuml/CDAN
- https://github.com/takerum/vat_chainer
- https://github.com/takerum/vat_tf
- https://github.com/RuiShu/dirt-t
- https://github.com/lyakaap/VAT-pytorch
- https://github.com/9310gaurav/virtual-adversarial-training
- https://github.com/thuml/Deep-Embedded-Validation
- https://github.com/lr94/abas
- https://github.com/thuml/Batch-Spectral-Penalization
- https://github.com/jvanvugt/pytorch-domain-adaptation
- https://github.com/ptrblck/pytorch_misc
%package -n python3-pytorch-adapt
Summary: Domain adaptation made easy. Fully featured, modular, and customizable.
Provides: python-pytorch-adapt
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pytorch-adapt
<h1>
<a href="https://github.com/KevinMusgrave/pytorch-adapt">
<img alt="PyTorch Adapt" src="https://github.com/KevinMusgrave/pytorch-adapt/blob/main/docs/imgs/Logo.png">
</a>
</h1>
<p align="center">
<a href="https://badge.fury.io/py/pytorch-adapt">
<img alt="PyPi version" src="https://badge.fury.io/py/pytorch-adapt.svg">
</a>
</p>
## Why use PyTorch Adapt?
PyTorch Adapt provides tools for **domain adaptation**, a type of machine learning algorithm that repurposes existing models to work in new domains. This library is:
### 1. **Fully featured**
Build a complete train/val domain adaptation pipeline in a few lines of code.
### 2. **Modular**
Use just the parts that suit your needs, whether it's the algorithms, loss functions, or validation methods.
### 3. **Highly customizable**
Customize and combine complex algorithms with ease.
### 4. **Compatible with frameworks**
Add additional functionality to your code by using one of the framework wrappers. Converting an algorithm into a PyTorch Lightning module is as simple as wrapping it with ```Lightning```.
## Documentation
- [**Documentation**](https://kevinmusgrave.github.io/pytorch-adapt/)
- [**Installation instructions**](https://github.com/KevinMusgrave/pytorch-adapt#installation)
- [**List of papers implemented**](https://kevinmusgrave.github.io/pytorch-adapt/algorithms/uda)
## Examples
See the **[examples folder](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/README.md)** for notebooks you can download or run on Google Colab.
## How to...
### Use in vanilla PyTorch
```python
from pytorch_adapt.hooks import DANNHook
from pytorch_adapt.utils.common_functions import batch_to_device
# Assuming that models, optimizers, and dataloader are already created.
hook = DANNHook(optimizers)
for data in tqdm(dataloader):
data = batch_to_device(data, device)
# Optimization is done inside the hook.
# The returned loss is for logging.
_, loss = hook({**models, **data})
```
### Build complex algorithms
Let's customize ```DANNHook``` with:
- minimum class confusion
- virtual adversarial training
```python
from pytorch_adapt.hooks import MCCHook, VATHook
# G and C are the Generator and Classifier models
G, C = models["G"], models["C"]
misc = {"combined_model": torch.nn.Sequential(G, C)}
hook = DANNHook(optimizers, post_g=[MCCHook(), VATHook()])
for data in tqdm(dataloader):
data = batch_to_device(data, device)
_, loss = hook({**models, **data, **misc})
```
### Wrap with your favorite PyTorch framework
First, set up the adapter and dataloaders:
```python
from pytorch_adapt.adapters import DANN
from pytorch_adapt.containers import Models
from pytorch_adapt.datasets import DataloaderCreator
models_cont = Models(models)
adapter = DANN(models=models_cont)
dc = DataloaderCreator(num_workers=2)
dataloaders = dc(**datasets)
```
Then use a framework wrapper:
#### PyTorch Lightning
```python
import pytorch_lightning as pl
from pytorch_adapt.frameworks.lightning import Lightning
L_adapter = Lightning(adapter)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, dataloaders["train"])
```
#### PyTorch Ignite
```python
trainer = Ignite(adapter)
trainer.run(datasets, dataloader_creator=dc)
```
### Check your model's performance
You can do this in vanilla PyTorch:
```python
from pytorch_adapt.validators import SNDValidator
# Assuming predictions have been collected
target_train = {"preds": preds}
validator = SNDValidator()
score = validator(target_train=target_train)
```
You can also do this during training with a framework wrapper:
#### PyTorch Lightning
```python
from pytorch_adapt.frameworks.utils import filter_datasets
validator = SNDValidator()
dataloaders = dc(**filter_datasets(datasets, validator))
train_loader = dataloaders.pop("train")
L_adapter = Lightning(adapter, validator=validator)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, train_loader, list(dataloaders.values()))
```
#### Pytorch Ignite
```python
from pytorch_adapt.validators import ScoreHistory
validator = ScoreHistory(SNDValidator())
trainer = Ignite(adapter, validator=validator)
trainer.run(datasets, dataloader_creator=dc)
```
### Run the above examples
See [this notebook](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/other/ReadmeExamples.ipynb) and [the examples page](https://github.com/KevinMusgrave/pytorch-adapt/tree/main/examples/) for other notebooks.
## Installation
### Pip
```
pip install pytorch-adapt
```
**To get the latest dev version**:
```
pip install pytorch-adapt --pre
```
**To use ```pytorch_adapt.frameworks.lightning```**:
```
pip install pytorch-adapt[lightning]
```
**To use ```pytorch_adapt.frameworks.ignite```**:
```
pip install pytorch-adapt[ignite]
```
### Conda
Coming soon...
### Dependencies
See [setup.py](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/setup.py)
## Acknowledgements
### Contributors
Thanks to the contributors who made pull requests!
| Contributor | Highlights |
| -- | -- |
| [deepseek-eoghan](https://github.com/deepseek-eoghan) | Improved the TargetDataset class |
### Advisors
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/).
### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.
### Citing this library
If you'd like to cite pytorch-adapt in your paper, you can refer to [this paper](https://arxiv.org/abs/2211.15673) by copy-pasting this bibtex reference:
```latex
@article{Musgrave2022PyTorchA,
title={PyTorch Adapt},
author={Kevin Musgrave and Serge J. Belongie and Ser Nam Lim},
journal={ArXiv},
year={2022},
volume={abs/2211.15673}
}
```
### Code references (in no particular order)
- https://github.com/wgchang/DSBN
- https://github.com/jihanyang/AFN
- https://github.com/thuml/Versatile-Domain-Adaptation
- https://github.com/tim-learn/ATDOC
- https://github.com/thuml/CDAN
- https://github.com/takerum/vat_chainer
- https://github.com/takerum/vat_tf
- https://github.com/RuiShu/dirt-t
- https://github.com/lyakaap/VAT-pytorch
- https://github.com/9310gaurav/virtual-adversarial-training
- https://github.com/thuml/Deep-Embedded-Validation
- https://github.com/lr94/abas
- https://github.com/thuml/Batch-Spectral-Penalization
- https://github.com/jvanvugt/pytorch-domain-adaptation
- https://github.com/ptrblck/pytorch_misc
%package help
Summary: Development documents and examples for pytorch-adapt
Provides: python3-pytorch-adapt-doc
%description help
<h1>
<a href="https://github.com/KevinMusgrave/pytorch-adapt">
<img alt="PyTorch Adapt" src="https://github.com/KevinMusgrave/pytorch-adapt/blob/main/docs/imgs/Logo.png">
</a>
</h1>
<p align="center">
<a href="https://badge.fury.io/py/pytorch-adapt">
<img alt="PyPi version" src="https://badge.fury.io/py/pytorch-adapt.svg">
</a>
</p>
## Why use PyTorch Adapt?
PyTorch Adapt provides tools for **domain adaptation**, a type of machine learning algorithm that repurposes existing models to work in new domains. This library is:
### 1. **Fully featured**
Build a complete train/val domain adaptation pipeline in a few lines of code.
### 2. **Modular**
Use just the parts that suit your needs, whether it's the algorithms, loss functions, or validation methods.
### 3. **Highly customizable**
Customize and combine complex algorithms with ease.
### 4. **Compatible with frameworks**
Add additional functionality to your code by using one of the framework wrappers. Converting an algorithm into a PyTorch Lightning module is as simple as wrapping it with ```Lightning```.
## Documentation
- [**Documentation**](https://kevinmusgrave.github.io/pytorch-adapt/)
- [**Installation instructions**](https://github.com/KevinMusgrave/pytorch-adapt#installation)
- [**List of papers implemented**](https://kevinmusgrave.github.io/pytorch-adapt/algorithms/uda)
## Examples
See the **[examples folder](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/README.md)** for notebooks you can download or run on Google Colab.
## How to...
### Use in vanilla PyTorch
```python
from pytorch_adapt.hooks import DANNHook
from pytorch_adapt.utils.common_functions import batch_to_device
# Assuming that models, optimizers, and dataloader are already created.
hook = DANNHook(optimizers)
for data in tqdm(dataloader):
data = batch_to_device(data, device)
# Optimization is done inside the hook.
# The returned loss is for logging.
_, loss = hook({**models, **data})
```
### Build complex algorithms
Let's customize ```DANNHook``` with:
- minimum class confusion
- virtual adversarial training
```python
from pytorch_adapt.hooks import MCCHook, VATHook
# G and C are the Generator and Classifier models
G, C = models["G"], models["C"]
misc = {"combined_model": torch.nn.Sequential(G, C)}
hook = DANNHook(optimizers, post_g=[MCCHook(), VATHook()])
for data in tqdm(dataloader):
data = batch_to_device(data, device)
_, loss = hook({**models, **data, **misc})
```
### Wrap with your favorite PyTorch framework
First, set up the adapter and dataloaders:
```python
from pytorch_adapt.adapters import DANN
from pytorch_adapt.containers import Models
from pytorch_adapt.datasets import DataloaderCreator
models_cont = Models(models)
adapter = DANN(models=models_cont)
dc = DataloaderCreator(num_workers=2)
dataloaders = dc(**datasets)
```
Then use a framework wrapper:
#### PyTorch Lightning
```python
import pytorch_lightning as pl
from pytorch_adapt.frameworks.lightning import Lightning
L_adapter = Lightning(adapter)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, dataloaders["train"])
```
#### PyTorch Ignite
```python
trainer = Ignite(adapter)
trainer.run(datasets, dataloader_creator=dc)
```
### Check your model's performance
You can do this in vanilla PyTorch:
```python
from pytorch_adapt.validators import SNDValidator
# Assuming predictions have been collected
target_train = {"preds": preds}
validator = SNDValidator()
score = validator(target_train=target_train)
```
You can also do this during training with a framework wrapper:
#### PyTorch Lightning
```python
from pytorch_adapt.frameworks.utils import filter_datasets
validator = SNDValidator()
dataloaders = dc(**filter_datasets(datasets, validator))
train_loader = dataloaders.pop("train")
L_adapter = Lightning(adapter, validator=validator)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, train_loader, list(dataloaders.values()))
```
#### Pytorch Ignite
```python
from pytorch_adapt.validators import ScoreHistory
validator = ScoreHistory(SNDValidator())
trainer = Ignite(adapter, validator=validator)
trainer.run(datasets, dataloader_creator=dc)
```
### Run the above examples
See [this notebook](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/other/ReadmeExamples.ipynb) and [the examples page](https://github.com/KevinMusgrave/pytorch-adapt/tree/main/examples/) for other notebooks.
## Installation
### Pip
```
pip install pytorch-adapt
```
**To get the latest dev version**:
```
pip install pytorch-adapt --pre
```
**To use ```pytorch_adapt.frameworks.lightning```**:
```
pip install pytorch-adapt[lightning]
```
**To use ```pytorch_adapt.frameworks.ignite```**:
```
pip install pytorch-adapt[ignite]
```
### Conda
Coming soon...
### Dependencies
See [setup.py](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/setup.py)
## Acknowledgements
### Contributors
Thanks to the contributors who made pull requests!
| Contributor | Highlights |
| -- | -- |
| [deepseek-eoghan](https://github.com/deepseek-eoghan) | Improved the TargetDataset class |
### Advisors
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/).
### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.
### Citing this library
If you'd like to cite pytorch-adapt in your paper, you can refer to [this paper](https://arxiv.org/abs/2211.15673) by copy-pasting this bibtex reference:
```latex
@article{Musgrave2022PyTorchA,
title={PyTorch Adapt},
author={Kevin Musgrave and Serge J. Belongie and Ser Nam Lim},
journal={ArXiv},
year={2022},
volume={abs/2211.15673}
}
```
### Code references (in no particular order)
- https://github.com/wgchang/DSBN
- https://github.com/jihanyang/AFN
- https://github.com/thuml/Versatile-Domain-Adaptation
- https://github.com/tim-learn/ATDOC
- https://github.com/thuml/CDAN
- https://github.com/takerum/vat_chainer
- https://github.com/takerum/vat_tf
- https://github.com/RuiShu/dirt-t
- https://github.com/lyakaap/VAT-pytorch
- https://github.com/9310gaurav/virtual-adversarial-training
- https://github.com/thuml/Deep-Embedded-Validation
- https://github.com/lr94/abas
- https://github.com/thuml/Batch-Spectral-Penalization
- https://github.com/jvanvugt/pytorch-domain-adaptation
- https://github.com/ptrblck/pytorch_misc
%prep
%autosetup -n pytorch-adapt-0.0.83
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pytorch-adapt -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.83-1
- Package Spec generated
|