summaryrefslogtreecommitdiff
path: root/python-pytorch-metric-learning.spec
blob: 08ae15186744849e234d66a83a2c31855ba56e0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
%global _empty_manifest_terminate_build 0
Name:		python-pytorch-metric-learning
Version:	2.1.0
Release:	1
Summary:	The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
License:	MIT License
URL:		https://github.com/KevinMusgrave/pytorch-metric-learning
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/fa/4f/216b76a20902ac2f00bf7009b5bca11a3b2db9baded9e66287b8b5d2afb2/pytorch-metric-learning-2.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scikit-learn
Requires:	python3-tqdm
Requires:	python3-torch
Requires:	python3-black
Requires:	python3-isort
Requires:	python3-nbqa
Requires:	python3-flake8
Requires:	python3-mkdocs-material
Requires:	python3-record-keeper
Requires:	python3-faiss-gpu
Requires:	python3-tensorboard
Requires:	python3-record-keeper
Requires:	python3-faiss-cpu
Requires:	python3-tensorboard

%description
<h1>
<a href="https://github.com/KevinMusgrave/pytorch-metric-learning">
<img alt="PyTorch Metric Learning" src="https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/docs/imgs/Logo2.png">
</a>
</h1>

<p align="center">
 <a href="https://pypi.org/project/pytorch-metric-learning">
     <img alt="PyPi version" src="https://img.shields.io/pypi/v/pytorch-metric-learning?color=bright-green">
 </a>
	
	
 
 <a href="https://anaconda.org/conda-forge/pytorch-metric-learning">
     <img alt="Anaconda version" src="https://img.shields.io/conda/v/conda-forge/pytorch-metric-learning?color=bright-green">
 </a>
</p>

## News

**January 16**: v1.7.0
- Fixes an edge case in ArcFaceLoss. See the [release notes](https://github.com/KevinMusgrave/pytorch-metric-learning/releases/tag/v1.7.0).
- Thanks to contributor [ElisonSherton](https://github.com/ElisonSherton).

**September 3**: v1.6.0
- `DistributedLossWrapper` and `DistributedMinerWrapper` now support `ref_emb` and `ref_labels`.
- Thanks to contributor [NoTody](https://github.com/NoTody).

## Documentation
- [**View the documentation here**](https://kevinmusgrave.github.io/pytorch-metric-learning/)
- [**View the installation instructions here**](https://github.com/KevinMusgrave/pytorch-metric-learning#installation)
- [**View the available losses, miners etc. here**](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/CONTENTS.md) 


## Google Colab Examples
See the [examples folder](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/README.md) for notebooks you can download or run on Google Colab.


## PyTorch Metric Learning Overview
This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow.

![high_level_module_overview](docs/imgs/high_level_module_overview.png)



## How loss functions work

### Using losses and miners in your training loop
Let’s initialize a plain [TripletMarginLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#tripletmarginloss):
```python
from pytorch_metric_learning import losses
loss_func = losses.TripletMarginLoss()
```

To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size.

```python
# your training loop
for i, (data, labels) in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = model(data)
	loss = loss_func(embeddings, labels)
	loss.backward()
	optimizer.step()
```

The TripletMarginLoss computes all possible triplets within the batch, based on the labels you pass into it. Anchor-positive pairs are formed by embeddings that share the same label, and anchor-negative pairs are formed by embeddings that have different labels. 

Sometimes it can help to add a mining function:
```python
from pytorch_metric_learning import miners, losses
miner = miners.MultiSimilarityMiner()
loss_func = losses.TripletMarginLoss()

# your training loop
for i, (data, labels) in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = model(data)
	hard_pairs = miner(embeddings, labels)
	loss = loss_func(embeddings, labels, hard_pairs)
	loss.backward()
	optimizer.step()
```
In the above code, the miner finds positive and negative pairs that it thinks are particularly difficult. Note that even though the TripletMarginLoss operates on triplets, it’s still possible to pass in pairs. This is because the library automatically converts pairs to triplets and triplets to pairs, when necessary.

### Customizing loss functions
Loss functions can be customized using [distances](https://kevinmusgrave.github.io/pytorch-metric-learning/distances/), [reducers](https://kevinmusgrave.github.io/pytorch-metric-learning/reducers/), and [regularizers](https://kevinmusgrave.github.io/pytorch-metric-learning/regularizers/). In the diagram below, a miner finds the indices of hard pairs within a batch. These are used to index into the distance matrix, computed by the distance object. For this diagram, the loss function is pair-based, so it computes a loss per pair. In addition, a regularizer has been supplied, so a regularization loss is computed for each embedding in the batch. The per-pair and per-element losses are passed to the reducer, which (in this diagram) only keeps losses with a high value. The averages are computed for the high-valued pair and element losses, and are then added together to obtain the final loss.

![high_level_loss_function_overview](docs/imgs/high_level_loss_function_overview.png)

Now here's an example of a customized TripletMarginLoss:
```python
from pytorch_metric_learning.distances import CosineSimilarity
from pytorch_metric_learning.reducers import ThresholdReducer
from pytorch_metric_learning.regularizers import LpRegularizer
from pytorch_metric_learning import losses
loss_func = losses.TripletMarginLoss(distance = CosineSimilarity(), 
				     reducer = ThresholdReducer(high=0.3), 
			 	     embedding_regularizer = LpRegularizer())
```
This customized triplet loss has the following properties:

 - The loss will be computed using cosine similarity instead of Euclidean distance.
 - All triplet losses that are higher than 0.3 will be discarded.
 - The embeddings will be L2 regularized.  

### Using loss functions for unsupervised / self-supervised learning

The TripletMarginLoss is an embedding-based or tuple-based loss. This means that internally, there is no real notion of "classes". Tuples (pairs or triplets) are formed at each iteration, based on the labels it receives. The labels don't have to represent classes. They simply need to indicate the positive and negative relationships between the embeddings. Thus, it is easy to use these loss functions for unsupervised or self-supervised learning. 

For example, the code below is a simplified version of the augmentation strategy commonly used in self-supervision. The dataset does not come with any labels. Instead, the labels are created in the training loop, solely to indicate which embeddings are positive pairs.

```python
# your training for-loop
for i, data in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = your_model(data)
	augmented = your_model(your_augmentation(data))
	labels = torch.arange(embeddings.size(0))

	embeddings = torch.cat([embeddings, augmented], dim=0)
	labels = torch.cat([labels, labels], dim=0)

	loss = loss_func(embeddings, labels)
	loss.backward()
	optimizer.step()
```

If you're interested in [MoCo](https://arxiv.org/pdf/1911.05722.pdf)-style self-supervision, take a look at the [MoCo on CIFAR10](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples#simple-examples) notebook. It uses CrossBatchMemory to implement the momentum encoder queue, which means you can use any tuple loss, and any tuple miner to extract hard samples from the queue.


## Highlights of the rest of the library

- For a convenient way to train your model, take a look at the [trainers](https://kevinmusgrave.github.io/pytorch-metric-learning/trainers/).
- Want to test your model's accuracy on a dataset? Try the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers/).
- To compute the accuracy of an embedding space directly, use [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/).

If you're short of time and want a complete train/test workflow, check out the [example Google Colab notebooks](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples).

To learn more about all of the above, [see the documentation](https://kevinmusgrave.github.io/pytorch-metric-learning). 


## Installation

### Required PyTorch version
 - ```pytorch-metric-learning >= v0.9.90``` requires ```torch >= 1.6```
 - ```pytorch-metric-learning < v0.9.90``` doesn't have a version requirement, but was tested with ```torch >= 1.2```

Other dependencies: ```numpy, scikit-learn, tqdm, torchvision```

### Pip
```
pip install pytorch-metric-learning
```

**To get the latest dev version**:
```
pip install pytorch-metric-learning --pre
```

**To install on Windows**:
```
pip install torch===1.6.0 torchvision===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install pytorch-metric-learning
```

**To install with evaluation and logging capabilities**

(This will install the unofficial pypi version of faiss-gpu, plus record-keeper and tensorboard):
```
pip install pytorch-metric-learning[with-hooks]
```

**To install with evaluation and logging capabilities (CPU)**

(This will install the unofficial pypi version of faiss-cpu, plus record-keeper and tensorboard):
```
pip install pytorch-metric-learning[with-hooks-cpu]
```
	
### Conda
```
conda install -c conda-forge pytorch-metric-learning
```

**To use the testing module, you'll need faiss, which can be installed via conda as well. See the [installation instructions for faiss](https://github.com/facebookresearch/faiss/blob/master/INSTALL.md).**

</details>
	


## Benchmark results
See [powerful-benchmarker](https://github.com/KevinMusgrave/powerful-benchmarker/) to view benchmark results and to use the benchmarking tool.


## Development
Development is done on the ```dev``` branch:
```
git checkout dev
```

Unit tests can be run with the default ```unittest``` library:
```bash
python -m unittest discover
```

You can specify the test datatypes and test device as environment variables. For example, to test using float32 and float64 on the CPU:
```bash
TEST_DTYPES=float32,float64 TEST_DEVICE=cpu python -m unittest discover
```

To run a single test file instead of the entire test suite, specify the file name:
```bash
python -m unittest tests/losses/test_angular_loss.py
```

Code is formatted using ```black``` and ```isort```:
```bash
pip install black isort
./format_code.sh
```


## Acknowledgements

### Contributors
Thanks to the contributors who made pull requests!

| Contributor | Highlights |
| -- | -- |
|[mlopezantequera](https://github.com/mlopezantequera) | - Made the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers) work on any combination of query and reference sets <br/> - Made [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) work with arbitrary label comparisons |
|[cwkeam](https://github.com/cwkeam) | - [VICRegLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#vicregloss) <br/> - Added mean reciprocal rank accuracy to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) |
|[marijnl](https://github.com/marijnl)| - [BatchEasyHardMiner](https://kevinmusgrave.github.io/pytorch-metric-learning/miners/#batcheasyhardminer) <br/> - [TwoStreamMetricLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/trainers/#twostreammetricloss) <br/> - [GlobalTwoStreamEmbeddingSpaceTester](https://kevinmusgrave.github.io/pytorch-metric-learning/testers/#globaltwostreamembeddingspacetester) <br/> - [Example using trainers.TwoStreamMetricLoss](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/TwoStreamMetricLoss.ipynb) |
| [chingisooinar](https://github.com/chingisooinar) | [SubCenterArcFaceLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#subcenterarcfaceloss) |
| [elias-ramzi](https://github.com/elias-ramzi) | [HierarchicalSampler](https://kevinmusgrave.github.io/pytorch-metric-learning/samplers/#hierarchicalsampler) |
| [fjsj](https://github.com/fjsj) | [SupConLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#supconloss) |
| [AlenUbuntu](https://github.com/AlenUbuntu) | [CircleLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#circleloss) |
| [interestingzhuo](https://github.com/interestingzhuo) | [**PNPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#pnploss) |
| [wconnell](https://github.com/wconnell) | [Learning a scRNAseq Metric Embedding](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/scRNAseq_MetricEmbedding.ipynb) |
| [AlexSchuy](https://github.com/AlexSchuy) | optimized ```utils.loss_and_miner_utils.get_random_triplet_indices``` |
| [JohnGiorgi](https://github.com/JohnGiorgi) | ```all_gather``` in [utils.distributed](https://kevinmusgrave.github.io/pytorch-metric-learning/distributed) |
| [Hummer12007](https://github.com/Hummer12007) | ```utils.key_checker``` |
| [vltanh](https://github.com/vltanh) | Made ```InferenceModel.train_indexer``` accept datasets |
| [btseytlin](https://github.com/btseytlin) | ```get_nearest_neighbors``` in [InferenceModel](https://kevinmusgrave.github.io/pytorch-metric-learning/inference_models) |
| [mlw214](https://github.com/mlw214) | Added ```return_per_class``` to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) |
| [layumi](https://github.com/layumi) | [InstanceLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#instanceloss) |
| [NoTody](https://github.com/NoTody) | Helped add `ref_emb` and `ref_labels` to the distributed wrappers. |
| [ElisonSherton](https://github.com/ElisonSherton) | Fixed an edge case in ArcFaceLoss. |
| [z1w](https://github.com/z1w) | |
| [thinline72](https://github.com/thinline72) | |
| [tpanum](https://github.com/tpanum) | |
| [fralik](https://github.com/fralik) | |
| [joaqo](https://github.com/joaqo) | |
| [JoOkuma](https://github.com/JoOkuma) | |
| [gkouros](https://github.com/gkouros) | |
| [yutanakamura-tky](https://github.com/yutanakamura-tky) | |
| [KinglittleQ](https://github.com/KinglittleQ) | |
| [martin0258](https://github.com/martin0258) | |
| [michaeldeyzel](https://github.com/michaeldeyzel) | |



### Facebook AI
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/) at [Facebook AI](https://ai.facebook.com/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/). This project began during my internship at Facebook AI where I received valuable feedback from Ser-Nam, and his team of computer vision and machine learning engineers and research scientists. In particular, thanks to [Ashish Shah](https://www.linkedin.com/in/ashish217/) and [Austin Reiter](https://www.linkedin.com/in/austin-reiter-3962aa7/) for reviewing my code during its early stages of development.

### Open-source repos
This library contains code that has been adapted and modified from the following great open-source repos:
- https://github.com/bnu-wangxun/Deep_Metric
- https://github.com/chaoyuaw/incubator-mxnet/blob/master/example/gluon/embedding_learning
- https://github.com/facebookresearch/deepcluster
- https://github.com/geonm/proxy-anchor-loss
- https://github.com/idstcv/SoftTriple
- https://github.com/kunhe/FastAP-metric-learning
- https://github.com/ronekko/deep_metric_learning
- https://github.com/tjddus9597/Proxy-Anchor-CVPR2020
- http://kaizhao.net/regularface

### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.

## Citing this library
If you'd like to cite pytorch-metric-learning in your paper, you can use this bibtex:
```latex
@article{Musgrave2020PyTorchML,
  title={PyTorch Metric Learning},
  author={Kevin Musgrave and Serge J. Belongie and Ser-Nam Lim},
  journal={ArXiv},
  year={2020},
  volume={abs/2008.09164}
}
```




%package -n python3-pytorch-metric-learning
Summary:	The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
Provides:	python-pytorch-metric-learning
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pytorch-metric-learning
<h1>
<a href="https://github.com/KevinMusgrave/pytorch-metric-learning">
<img alt="PyTorch Metric Learning" src="https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/docs/imgs/Logo2.png">
</a>
</h1>

<p align="center">
 <a href="https://pypi.org/project/pytorch-metric-learning">
     <img alt="PyPi version" src="https://img.shields.io/pypi/v/pytorch-metric-learning?color=bright-green">
 </a>
	
	
 
 <a href="https://anaconda.org/conda-forge/pytorch-metric-learning">
     <img alt="Anaconda version" src="https://img.shields.io/conda/v/conda-forge/pytorch-metric-learning?color=bright-green">
 </a>
</p>

## News

**January 16**: v1.7.0
- Fixes an edge case in ArcFaceLoss. See the [release notes](https://github.com/KevinMusgrave/pytorch-metric-learning/releases/tag/v1.7.0).
- Thanks to contributor [ElisonSherton](https://github.com/ElisonSherton).

**September 3**: v1.6.0
- `DistributedLossWrapper` and `DistributedMinerWrapper` now support `ref_emb` and `ref_labels`.
- Thanks to contributor [NoTody](https://github.com/NoTody).

## Documentation
- [**View the documentation here**](https://kevinmusgrave.github.io/pytorch-metric-learning/)
- [**View the installation instructions here**](https://github.com/KevinMusgrave/pytorch-metric-learning#installation)
- [**View the available losses, miners etc. here**](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/CONTENTS.md) 


## Google Colab Examples
See the [examples folder](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/README.md) for notebooks you can download or run on Google Colab.


## PyTorch Metric Learning Overview
This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow.

![high_level_module_overview](docs/imgs/high_level_module_overview.png)



## How loss functions work

### Using losses and miners in your training loop
Let’s initialize a plain [TripletMarginLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#tripletmarginloss):
```python
from pytorch_metric_learning import losses
loss_func = losses.TripletMarginLoss()
```

To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size.

```python
# your training loop
for i, (data, labels) in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = model(data)
	loss = loss_func(embeddings, labels)
	loss.backward()
	optimizer.step()
```

The TripletMarginLoss computes all possible triplets within the batch, based on the labels you pass into it. Anchor-positive pairs are formed by embeddings that share the same label, and anchor-negative pairs are formed by embeddings that have different labels. 

Sometimes it can help to add a mining function:
```python
from pytorch_metric_learning import miners, losses
miner = miners.MultiSimilarityMiner()
loss_func = losses.TripletMarginLoss()

# your training loop
for i, (data, labels) in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = model(data)
	hard_pairs = miner(embeddings, labels)
	loss = loss_func(embeddings, labels, hard_pairs)
	loss.backward()
	optimizer.step()
```
In the above code, the miner finds positive and negative pairs that it thinks are particularly difficult. Note that even though the TripletMarginLoss operates on triplets, it’s still possible to pass in pairs. This is because the library automatically converts pairs to triplets and triplets to pairs, when necessary.

### Customizing loss functions
Loss functions can be customized using [distances](https://kevinmusgrave.github.io/pytorch-metric-learning/distances/), [reducers](https://kevinmusgrave.github.io/pytorch-metric-learning/reducers/), and [regularizers](https://kevinmusgrave.github.io/pytorch-metric-learning/regularizers/). In the diagram below, a miner finds the indices of hard pairs within a batch. These are used to index into the distance matrix, computed by the distance object. For this diagram, the loss function is pair-based, so it computes a loss per pair. In addition, a regularizer has been supplied, so a regularization loss is computed for each embedding in the batch. The per-pair and per-element losses are passed to the reducer, which (in this diagram) only keeps losses with a high value. The averages are computed for the high-valued pair and element losses, and are then added together to obtain the final loss.

![high_level_loss_function_overview](docs/imgs/high_level_loss_function_overview.png)

Now here's an example of a customized TripletMarginLoss:
```python
from pytorch_metric_learning.distances import CosineSimilarity
from pytorch_metric_learning.reducers import ThresholdReducer
from pytorch_metric_learning.regularizers import LpRegularizer
from pytorch_metric_learning import losses
loss_func = losses.TripletMarginLoss(distance = CosineSimilarity(), 
				     reducer = ThresholdReducer(high=0.3), 
			 	     embedding_regularizer = LpRegularizer())
```
This customized triplet loss has the following properties:

 - The loss will be computed using cosine similarity instead of Euclidean distance.
 - All triplet losses that are higher than 0.3 will be discarded.
 - The embeddings will be L2 regularized.  

### Using loss functions for unsupervised / self-supervised learning

The TripletMarginLoss is an embedding-based or tuple-based loss. This means that internally, there is no real notion of "classes". Tuples (pairs or triplets) are formed at each iteration, based on the labels it receives. The labels don't have to represent classes. They simply need to indicate the positive and negative relationships between the embeddings. Thus, it is easy to use these loss functions for unsupervised or self-supervised learning. 

For example, the code below is a simplified version of the augmentation strategy commonly used in self-supervision. The dataset does not come with any labels. Instead, the labels are created in the training loop, solely to indicate which embeddings are positive pairs.

```python
# your training for-loop
for i, data in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = your_model(data)
	augmented = your_model(your_augmentation(data))
	labels = torch.arange(embeddings.size(0))

	embeddings = torch.cat([embeddings, augmented], dim=0)
	labels = torch.cat([labels, labels], dim=0)

	loss = loss_func(embeddings, labels)
	loss.backward()
	optimizer.step()
```

If you're interested in [MoCo](https://arxiv.org/pdf/1911.05722.pdf)-style self-supervision, take a look at the [MoCo on CIFAR10](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples#simple-examples) notebook. It uses CrossBatchMemory to implement the momentum encoder queue, which means you can use any tuple loss, and any tuple miner to extract hard samples from the queue.


## Highlights of the rest of the library

- For a convenient way to train your model, take a look at the [trainers](https://kevinmusgrave.github.io/pytorch-metric-learning/trainers/).
- Want to test your model's accuracy on a dataset? Try the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers/).
- To compute the accuracy of an embedding space directly, use [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/).

If you're short of time and want a complete train/test workflow, check out the [example Google Colab notebooks](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples).

To learn more about all of the above, [see the documentation](https://kevinmusgrave.github.io/pytorch-metric-learning). 


## Installation

### Required PyTorch version
 - ```pytorch-metric-learning >= v0.9.90``` requires ```torch >= 1.6```
 - ```pytorch-metric-learning < v0.9.90``` doesn't have a version requirement, but was tested with ```torch >= 1.2```

Other dependencies: ```numpy, scikit-learn, tqdm, torchvision```

### Pip
```
pip install pytorch-metric-learning
```

**To get the latest dev version**:
```
pip install pytorch-metric-learning --pre
```

**To install on Windows**:
```
pip install torch===1.6.0 torchvision===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install pytorch-metric-learning
```

**To install with evaluation and logging capabilities**

(This will install the unofficial pypi version of faiss-gpu, plus record-keeper and tensorboard):
```
pip install pytorch-metric-learning[with-hooks]
```

**To install with evaluation and logging capabilities (CPU)**

(This will install the unofficial pypi version of faiss-cpu, plus record-keeper and tensorboard):
```
pip install pytorch-metric-learning[with-hooks-cpu]
```
	
### Conda
```
conda install -c conda-forge pytorch-metric-learning
```

**To use the testing module, you'll need faiss, which can be installed via conda as well. See the [installation instructions for faiss](https://github.com/facebookresearch/faiss/blob/master/INSTALL.md).**

</details>
	


## Benchmark results
See [powerful-benchmarker](https://github.com/KevinMusgrave/powerful-benchmarker/) to view benchmark results and to use the benchmarking tool.


## Development
Development is done on the ```dev``` branch:
```
git checkout dev
```

Unit tests can be run with the default ```unittest``` library:
```bash
python -m unittest discover
```

You can specify the test datatypes and test device as environment variables. For example, to test using float32 and float64 on the CPU:
```bash
TEST_DTYPES=float32,float64 TEST_DEVICE=cpu python -m unittest discover
```

To run a single test file instead of the entire test suite, specify the file name:
```bash
python -m unittest tests/losses/test_angular_loss.py
```

Code is formatted using ```black``` and ```isort```:
```bash
pip install black isort
./format_code.sh
```


## Acknowledgements

### Contributors
Thanks to the contributors who made pull requests!

| Contributor | Highlights |
| -- | -- |
|[mlopezantequera](https://github.com/mlopezantequera) | - Made the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers) work on any combination of query and reference sets <br/> - Made [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) work with arbitrary label comparisons |
|[cwkeam](https://github.com/cwkeam) | - [VICRegLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#vicregloss) <br/> - Added mean reciprocal rank accuracy to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) |
|[marijnl](https://github.com/marijnl)| - [BatchEasyHardMiner](https://kevinmusgrave.github.io/pytorch-metric-learning/miners/#batcheasyhardminer) <br/> - [TwoStreamMetricLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/trainers/#twostreammetricloss) <br/> - [GlobalTwoStreamEmbeddingSpaceTester](https://kevinmusgrave.github.io/pytorch-metric-learning/testers/#globaltwostreamembeddingspacetester) <br/> - [Example using trainers.TwoStreamMetricLoss](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/TwoStreamMetricLoss.ipynb) |
| [chingisooinar](https://github.com/chingisooinar) | [SubCenterArcFaceLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#subcenterarcfaceloss) |
| [elias-ramzi](https://github.com/elias-ramzi) | [HierarchicalSampler](https://kevinmusgrave.github.io/pytorch-metric-learning/samplers/#hierarchicalsampler) |
| [fjsj](https://github.com/fjsj) | [SupConLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#supconloss) |
| [AlenUbuntu](https://github.com/AlenUbuntu) | [CircleLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#circleloss) |
| [interestingzhuo](https://github.com/interestingzhuo) | [**PNPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#pnploss) |
| [wconnell](https://github.com/wconnell) | [Learning a scRNAseq Metric Embedding](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/scRNAseq_MetricEmbedding.ipynb) |
| [AlexSchuy](https://github.com/AlexSchuy) | optimized ```utils.loss_and_miner_utils.get_random_triplet_indices``` |
| [JohnGiorgi](https://github.com/JohnGiorgi) | ```all_gather``` in [utils.distributed](https://kevinmusgrave.github.io/pytorch-metric-learning/distributed) |
| [Hummer12007](https://github.com/Hummer12007) | ```utils.key_checker``` |
| [vltanh](https://github.com/vltanh) | Made ```InferenceModel.train_indexer``` accept datasets |
| [btseytlin](https://github.com/btseytlin) | ```get_nearest_neighbors``` in [InferenceModel](https://kevinmusgrave.github.io/pytorch-metric-learning/inference_models) |
| [mlw214](https://github.com/mlw214) | Added ```return_per_class``` to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) |
| [layumi](https://github.com/layumi) | [InstanceLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#instanceloss) |
| [NoTody](https://github.com/NoTody) | Helped add `ref_emb` and `ref_labels` to the distributed wrappers. |
| [ElisonSherton](https://github.com/ElisonSherton) | Fixed an edge case in ArcFaceLoss. |
| [z1w](https://github.com/z1w) | |
| [thinline72](https://github.com/thinline72) | |
| [tpanum](https://github.com/tpanum) | |
| [fralik](https://github.com/fralik) | |
| [joaqo](https://github.com/joaqo) | |
| [JoOkuma](https://github.com/JoOkuma) | |
| [gkouros](https://github.com/gkouros) | |
| [yutanakamura-tky](https://github.com/yutanakamura-tky) | |
| [KinglittleQ](https://github.com/KinglittleQ) | |
| [martin0258](https://github.com/martin0258) | |
| [michaeldeyzel](https://github.com/michaeldeyzel) | |



### Facebook AI
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/) at [Facebook AI](https://ai.facebook.com/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/). This project began during my internship at Facebook AI where I received valuable feedback from Ser-Nam, and his team of computer vision and machine learning engineers and research scientists. In particular, thanks to [Ashish Shah](https://www.linkedin.com/in/ashish217/) and [Austin Reiter](https://www.linkedin.com/in/austin-reiter-3962aa7/) for reviewing my code during its early stages of development.

### Open-source repos
This library contains code that has been adapted and modified from the following great open-source repos:
- https://github.com/bnu-wangxun/Deep_Metric
- https://github.com/chaoyuaw/incubator-mxnet/blob/master/example/gluon/embedding_learning
- https://github.com/facebookresearch/deepcluster
- https://github.com/geonm/proxy-anchor-loss
- https://github.com/idstcv/SoftTriple
- https://github.com/kunhe/FastAP-metric-learning
- https://github.com/ronekko/deep_metric_learning
- https://github.com/tjddus9597/Proxy-Anchor-CVPR2020
- http://kaizhao.net/regularface

### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.

## Citing this library
If you'd like to cite pytorch-metric-learning in your paper, you can use this bibtex:
```latex
@article{Musgrave2020PyTorchML,
  title={PyTorch Metric Learning},
  author={Kevin Musgrave and Serge J. Belongie and Ser-Nam Lim},
  journal={ArXiv},
  year={2020},
  volume={abs/2008.09164}
}
```




%package help
Summary:	Development documents and examples for pytorch-metric-learning
Provides:	python3-pytorch-metric-learning-doc
%description help
<h1>
<a href="https://github.com/KevinMusgrave/pytorch-metric-learning">
<img alt="PyTorch Metric Learning" src="https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/docs/imgs/Logo2.png">
</a>
</h1>

<p align="center">
 <a href="https://pypi.org/project/pytorch-metric-learning">
     <img alt="PyPi version" src="https://img.shields.io/pypi/v/pytorch-metric-learning?color=bright-green">
 </a>
	
	
 
 <a href="https://anaconda.org/conda-forge/pytorch-metric-learning">
     <img alt="Anaconda version" src="https://img.shields.io/conda/v/conda-forge/pytorch-metric-learning?color=bright-green">
 </a>
</p>

## News

**January 16**: v1.7.0
- Fixes an edge case in ArcFaceLoss. See the [release notes](https://github.com/KevinMusgrave/pytorch-metric-learning/releases/tag/v1.7.0).
- Thanks to contributor [ElisonSherton](https://github.com/ElisonSherton).

**September 3**: v1.6.0
- `DistributedLossWrapper` and `DistributedMinerWrapper` now support `ref_emb` and `ref_labels`.
- Thanks to contributor [NoTody](https://github.com/NoTody).

## Documentation
- [**View the documentation here**](https://kevinmusgrave.github.io/pytorch-metric-learning/)
- [**View the installation instructions here**](https://github.com/KevinMusgrave/pytorch-metric-learning#installation)
- [**View the available losses, miners etc. here**](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/CONTENTS.md) 


## Google Colab Examples
See the [examples folder](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/README.md) for notebooks you can download or run on Google Colab.


## PyTorch Metric Learning Overview
This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow.

![high_level_module_overview](docs/imgs/high_level_module_overview.png)



## How loss functions work

### Using losses and miners in your training loop
Let’s initialize a plain [TripletMarginLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#tripletmarginloss):
```python
from pytorch_metric_learning import losses
loss_func = losses.TripletMarginLoss()
```

To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size.

```python
# your training loop
for i, (data, labels) in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = model(data)
	loss = loss_func(embeddings, labels)
	loss.backward()
	optimizer.step()
```

The TripletMarginLoss computes all possible triplets within the batch, based on the labels you pass into it. Anchor-positive pairs are formed by embeddings that share the same label, and anchor-negative pairs are formed by embeddings that have different labels. 

Sometimes it can help to add a mining function:
```python
from pytorch_metric_learning import miners, losses
miner = miners.MultiSimilarityMiner()
loss_func = losses.TripletMarginLoss()

# your training loop
for i, (data, labels) in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = model(data)
	hard_pairs = miner(embeddings, labels)
	loss = loss_func(embeddings, labels, hard_pairs)
	loss.backward()
	optimizer.step()
```
In the above code, the miner finds positive and negative pairs that it thinks are particularly difficult. Note that even though the TripletMarginLoss operates on triplets, it’s still possible to pass in pairs. This is because the library automatically converts pairs to triplets and triplets to pairs, when necessary.

### Customizing loss functions
Loss functions can be customized using [distances](https://kevinmusgrave.github.io/pytorch-metric-learning/distances/), [reducers](https://kevinmusgrave.github.io/pytorch-metric-learning/reducers/), and [regularizers](https://kevinmusgrave.github.io/pytorch-metric-learning/regularizers/). In the diagram below, a miner finds the indices of hard pairs within a batch. These are used to index into the distance matrix, computed by the distance object. For this diagram, the loss function is pair-based, so it computes a loss per pair. In addition, a regularizer has been supplied, so a regularization loss is computed for each embedding in the batch. The per-pair and per-element losses are passed to the reducer, which (in this diagram) only keeps losses with a high value. The averages are computed for the high-valued pair and element losses, and are then added together to obtain the final loss.

![high_level_loss_function_overview](docs/imgs/high_level_loss_function_overview.png)

Now here's an example of a customized TripletMarginLoss:
```python
from pytorch_metric_learning.distances import CosineSimilarity
from pytorch_metric_learning.reducers import ThresholdReducer
from pytorch_metric_learning.regularizers import LpRegularizer
from pytorch_metric_learning import losses
loss_func = losses.TripletMarginLoss(distance = CosineSimilarity(), 
				     reducer = ThresholdReducer(high=0.3), 
			 	     embedding_regularizer = LpRegularizer())
```
This customized triplet loss has the following properties:

 - The loss will be computed using cosine similarity instead of Euclidean distance.
 - All triplet losses that are higher than 0.3 will be discarded.
 - The embeddings will be L2 regularized.  

### Using loss functions for unsupervised / self-supervised learning

The TripletMarginLoss is an embedding-based or tuple-based loss. This means that internally, there is no real notion of "classes". Tuples (pairs or triplets) are formed at each iteration, based on the labels it receives. The labels don't have to represent classes. They simply need to indicate the positive and negative relationships between the embeddings. Thus, it is easy to use these loss functions for unsupervised or self-supervised learning. 

For example, the code below is a simplified version of the augmentation strategy commonly used in self-supervision. The dataset does not come with any labels. Instead, the labels are created in the training loop, solely to indicate which embeddings are positive pairs.

```python
# your training for-loop
for i, data in enumerate(dataloader):
	optimizer.zero_grad()
	embeddings = your_model(data)
	augmented = your_model(your_augmentation(data))
	labels = torch.arange(embeddings.size(0))

	embeddings = torch.cat([embeddings, augmented], dim=0)
	labels = torch.cat([labels, labels], dim=0)

	loss = loss_func(embeddings, labels)
	loss.backward()
	optimizer.step()
```

If you're interested in [MoCo](https://arxiv.org/pdf/1911.05722.pdf)-style self-supervision, take a look at the [MoCo on CIFAR10](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples#simple-examples) notebook. It uses CrossBatchMemory to implement the momentum encoder queue, which means you can use any tuple loss, and any tuple miner to extract hard samples from the queue.


## Highlights of the rest of the library

- For a convenient way to train your model, take a look at the [trainers](https://kevinmusgrave.github.io/pytorch-metric-learning/trainers/).
- Want to test your model's accuracy on a dataset? Try the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers/).
- To compute the accuracy of an embedding space directly, use [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/).

If you're short of time and want a complete train/test workflow, check out the [example Google Colab notebooks](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples).

To learn more about all of the above, [see the documentation](https://kevinmusgrave.github.io/pytorch-metric-learning). 


## Installation

### Required PyTorch version
 - ```pytorch-metric-learning >= v0.9.90``` requires ```torch >= 1.6```
 - ```pytorch-metric-learning < v0.9.90``` doesn't have a version requirement, but was tested with ```torch >= 1.2```

Other dependencies: ```numpy, scikit-learn, tqdm, torchvision```

### Pip
```
pip install pytorch-metric-learning
```

**To get the latest dev version**:
```
pip install pytorch-metric-learning --pre
```

**To install on Windows**:
```
pip install torch===1.6.0 torchvision===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install pytorch-metric-learning
```

**To install with evaluation and logging capabilities**

(This will install the unofficial pypi version of faiss-gpu, plus record-keeper and tensorboard):
```
pip install pytorch-metric-learning[with-hooks]
```

**To install with evaluation and logging capabilities (CPU)**

(This will install the unofficial pypi version of faiss-cpu, plus record-keeper and tensorboard):
```
pip install pytorch-metric-learning[with-hooks-cpu]
```
	
### Conda
```
conda install -c conda-forge pytorch-metric-learning
```

**To use the testing module, you'll need faiss, which can be installed via conda as well. See the [installation instructions for faiss](https://github.com/facebookresearch/faiss/blob/master/INSTALL.md).**

</details>
	


## Benchmark results
See [powerful-benchmarker](https://github.com/KevinMusgrave/powerful-benchmarker/) to view benchmark results and to use the benchmarking tool.


## Development
Development is done on the ```dev``` branch:
```
git checkout dev
```

Unit tests can be run with the default ```unittest``` library:
```bash
python -m unittest discover
```

You can specify the test datatypes and test device as environment variables. For example, to test using float32 and float64 on the CPU:
```bash
TEST_DTYPES=float32,float64 TEST_DEVICE=cpu python -m unittest discover
```

To run a single test file instead of the entire test suite, specify the file name:
```bash
python -m unittest tests/losses/test_angular_loss.py
```

Code is formatted using ```black``` and ```isort```:
```bash
pip install black isort
./format_code.sh
```


## Acknowledgements

### Contributors
Thanks to the contributors who made pull requests!

| Contributor | Highlights |
| -- | -- |
|[mlopezantequera](https://github.com/mlopezantequera) | - Made the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers) work on any combination of query and reference sets <br/> - Made [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) work with arbitrary label comparisons |
|[cwkeam](https://github.com/cwkeam) | - [VICRegLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#vicregloss) <br/> - Added mean reciprocal rank accuracy to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) |
|[marijnl](https://github.com/marijnl)| - [BatchEasyHardMiner](https://kevinmusgrave.github.io/pytorch-metric-learning/miners/#batcheasyhardminer) <br/> - [TwoStreamMetricLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/trainers/#twostreammetricloss) <br/> - [GlobalTwoStreamEmbeddingSpaceTester](https://kevinmusgrave.github.io/pytorch-metric-learning/testers/#globaltwostreamembeddingspacetester) <br/> - [Example using trainers.TwoStreamMetricLoss](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/TwoStreamMetricLoss.ipynb) |
| [chingisooinar](https://github.com/chingisooinar) | [SubCenterArcFaceLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#subcenterarcfaceloss) |
| [elias-ramzi](https://github.com/elias-ramzi) | [HierarchicalSampler](https://kevinmusgrave.github.io/pytorch-metric-learning/samplers/#hierarchicalsampler) |
| [fjsj](https://github.com/fjsj) | [SupConLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#supconloss) |
| [AlenUbuntu](https://github.com/AlenUbuntu) | [CircleLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#circleloss) |
| [interestingzhuo](https://github.com/interestingzhuo) | [**PNPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#pnploss) |
| [wconnell](https://github.com/wconnell) | [Learning a scRNAseq Metric Embedding](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/scRNAseq_MetricEmbedding.ipynb) |
| [AlexSchuy](https://github.com/AlexSchuy) | optimized ```utils.loss_and_miner_utils.get_random_triplet_indices``` |
| [JohnGiorgi](https://github.com/JohnGiorgi) | ```all_gather``` in [utils.distributed](https://kevinmusgrave.github.io/pytorch-metric-learning/distributed) |
| [Hummer12007](https://github.com/Hummer12007) | ```utils.key_checker``` |
| [vltanh](https://github.com/vltanh) | Made ```InferenceModel.train_indexer``` accept datasets |
| [btseytlin](https://github.com/btseytlin) | ```get_nearest_neighbors``` in [InferenceModel](https://kevinmusgrave.github.io/pytorch-metric-learning/inference_models) |
| [mlw214](https://github.com/mlw214) | Added ```return_per_class``` to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) |
| [layumi](https://github.com/layumi) | [InstanceLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#instanceloss) |
| [NoTody](https://github.com/NoTody) | Helped add `ref_emb` and `ref_labels` to the distributed wrappers. |
| [ElisonSherton](https://github.com/ElisonSherton) | Fixed an edge case in ArcFaceLoss. |
| [z1w](https://github.com/z1w) | |
| [thinline72](https://github.com/thinline72) | |
| [tpanum](https://github.com/tpanum) | |
| [fralik](https://github.com/fralik) | |
| [joaqo](https://github.com/joaqo) | |
| [JoOkuma](https://github.com/JoOkuma) | |
| [gkouros](https://github.com/gkouros) | |
| [yutanakamura-tky](https://github.com/yutanakamura-tky) | |
| [KinglittleQ](https://github.com/KinglittleQ) | |
| [martin0258](https://github.com/martin0258) | |
| [michaeldeyzel](https://github.com/michaeldeyzel) | |



### Facebook AI
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/) at [Facebook AI](https://ai.facebook.com/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/). This project began during my internship at Facebook AI where I received valuable feedback from Ser-Nam, and his team of computer vision and machine learning engineers and research scientists. In particular, thanks to [Ashish Shah](https://www.linkedin.com/in/ashish217/) and [Austin Reiter](https://www.linkedin.com/in/austin-reiter-3962aa7/) for reviewing my code during its early stages of development.

### Open-source repos
This library contains code that has been adapted and modified from the following great open-source repos:
- https://github.com/bnu-wangxun/Deep_Metric
- https://github.com/chaoyuaw/incubator-mxnet/blob/master/example/gluon/embedding_learning
- https://github.com/facebookresearch/deepcluster
- https://github.com/geonm/proxy-anchor-loss
- https://github.com/idstcv/SoftTriple
- https://github.com/kunhe/FastAP-metric-learning
- https://github.com/ronekko/deep_metric_learning
- https://github.com/tjddus9597/Proxy-Anchor-CVPR2020
- http://kaizhao.net/regularface

### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.

## Citing this library
If you'd like to cite pytorch-metric-learning in your paper, you can use this bibtex:
```latex
@article{Musgrave2020PyTorchML,
  title={PyTorch Metric Learning},
  author={Kevin Musgrave and Serge J. Belongie and Ser-Nam Lim},
  journal={ArXiv},
  year={2020},
  volume={abs/2008.09164}
}
```




%prep
%autosetup -n pytorch-metric-learning-2.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pytorch-metric-learning -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1
- Package Spec generated