summaryrefslogtreecommitdiff
path: root/python-pytorchyolo.spec
blob: 2374b50e1ff845be3100e1ebbeb243bcc0e0bf45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
%global _empty_manifest_terminate_build 0
Name:		python-pytorchyolo
Version:	1.8.0
Release:	1
Summary:	Minimal PyTorch implementation of YOLO
License:	GPL-3.0
URL:		https://github.com/eriklindernoren/PyTorch-YOLOv3
Source0:	https://mirrors.aliyun.com/pypi/web/packages/fc/f0/13da945adfda462d6407b68375bdb02b9952fea1c208b14b594873aebd20/pytorchyolo-1.8.0.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-torchvision
Requires:	python3-matplotlib
Requires:	python3-tensorboard
Requires:	python3-terminaltables
Requires:	python3-Pillow
Requires:	python3-tqdm
Requires:	python3-urllib3
Requires:	python3-urllib3
Requires:	python3-scipy
Requires:	python3-scipy
Requires:	python3-imgaug
Requires:	python3-torchsummary
Requires:	python3-numpy

%description
# PyTorch YOLO
A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

YOLOv4 and YOLOv7 weights are also compatible with this implementation.

[![CI](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml/badge.svg)](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/pytorchyolo.svg)](https://pypi.python.org/pypi/pytorchyolo/) [![PyPI license](https://img.shields.io/pypi/l/pytorchyolo.svg)](LICENSE)

## Installation
### Installing from source

For normal training and evaluation we recommend installing the package from source using a poetry virtual environment.

```bash
git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
cd PyTorch-YOLOv3/
pip3 install poetry --user
poetry install
```

You need to join the virtual environment by running `poetry shell` in this directory before running any of the following commands without the `poetry run` prefix.
Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.

#### Download pretrained weights

```bash
./weights/download_weights.sh
```

#### Download COCO

```bash
./data/get_coco_dataset.sh
```

### Install via pip

This installation method is recommended, if you want to use this package as a dependency in another python project.
This method only includes the code, is less isolated and may conflict with other packages.
Weights and the COCO dataset need to be downloaded as stated above.
See __API__ for further information regarding the packages API.
It also enables the CLI tools `yolo-detect`, `yolo-train`, and `yolo-test` everywhere without any additional commands.

```bash
pip3 install pytorchyolo --user
```

## Test
Evaluates the model on COCO test dataset.
To download this dataset as well as weights, see above.

```bash
poetry run yolo-test --weights weights/yolov3.weights
```

| Model                   | mAP (min. 50 IoU) |
| ----------------------- |:-----------------:|
| YOLOv3 608 (paper)      | 57.9              |
| YOLOv3 608 (this impl.) | 57.3              |
| YOLOv3 416 (paper)      | 55.3              |
| YOLOv3 416 (this impl.) | 55.5              |

## Inference
Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.

| Backbone                | GPU      | FPS      |
| ----------------------- |:--------:|:--------:|
| ResNet-101              | Titan X  | 53       |
| ResNet-152              | Titan X  | 37       |
| Darknet-53 (paper)      | Titan X  | 76       |
| Darknet-53 (this impl.) | 1080ti   | 74       |

```bash
poetry run yolo-detect --images data/samples/
```

<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/giraffe.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/dog.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/traffic.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/messi.png" width="480"\></p>

## Train
For argument descriptions have a look at `poetry run yolo-train --help`

#### Example (COCO)
To train on COCO using a Darknet-53 backend pretrained on ImageNet run:

```bash
poetry run yolo-train --data config/coco.data  --pretrained_weights weights/darknet53.conv.74
```

#### Tensorboard
Track training progress in Tensorboard:
* Initialize training
* Run the command below
* Go to http://localhost:6006/

```bash
poetry run tensorboard --logdir='logs' --port=6006
```

Storing the logs on a slow drive possibly leads to a significant training speed decrease.

You can adjust the log directory using `--logdir <path>` when running `tensorboard` and `yolo-train`.

## Train on Custom Dataset

#### Custom model
Run the commands below to create a custom model definition, replacing `<num-classes>` with the number of classes in your dataset.

```bash
./config/create_custom_model.sh <num-classes>  # Will create custom model 'yolov3-custom.cfg'
```

#### Classes
Add class names to `data/custom/classes.names`. This file should have one row per class name.

#### Image Folder
Move the images of your dataset to `data/custom/images/`.

#### Annotation Folder
Move your annotations to `data/custom/labels/`. The dataloader expects that the annotation file corresponding to the image `data/custom/images/train.jpg` has the path `data/custom/labels/train.txt`. Each row in the annotation file should define one bounding box, using the syntax `label_idx x_center y_center width height`. The coordinates should be scaled `[0, 1]`, and the `label_idx` should be zero-indexed and correspond to the row number of the class name in `data/custom/classes.names`.

#### Define Train and Validation Sets
In `data/custom/train.txt` and `data/custom/valid.txt`, add paths to images that will be used as train and validation data respectively.

#### Train
To train on the custom dataset run:

```bash
poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data
```

Add `--pretrained_weights weights/darknet53.conv.74` to train using a backend pretrained on ImageNet.


## API

You are able to import the modules of this repo in your own project if you install the pip package `pytorchyolo`.

An example prediction call from a simple OpenCV python script would look like this:

```python
import cv2
from pytorchyolo import detect, models

# Load the YOLO model
model = models.load_model(
  "<PATH_TO_YOUR_CONFIG_FOLDER>/yolov3.cfg",
  "<PATH_TO_YOUR_WEIGHTS_FOLDER>/yolov3.weights")

# Load the image as a numpy array
img = cv2.imread("<PATH_TO_YOUR_IMAGE>")

# Convert OpenCV bgr to rgb
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# Runs the YOLO model on the image
boxes = detect.detect_image(model, img)

print(boxes)
# Output will be a numpy array in the following format:
# [[x1, y1, x2, y2, confidence, class]]
```

For more advanced usage look at the method's doc strings.

## Credit

### YOLOv3: An Incremental Improvement
_Joseph Redmon, Ali Farhadi_ <br>

**Abstract** <br>
We present some updates to YOLO! We made a bunch
of little design changes to make it better. We also trained
this new network that’s pretty swell. It’s a little bigger than
last time but more accurate. It’s still fast though, don’t
worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP,
as accurate as SSD but three times faster. When we look
at the old .5 IOU mAP detection metric YOLOv3 is quite
good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared
to 57.5 AP50 in 198 ms by RetinaNet, similar performance
but 3.8× faster. As always, all the code is online at
https://pjreddie.com/yolo/.

[[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Project Webpage]](https://pjreddie.com/darknet/yolo/) [[Authors' Implementation]](https://github.com/pjreddie/darknet)

```
@article{yolov3,
  title={YOLOv3: An Incremental Improvement},
  author={Redmon, Joseph and Farhadi, Ali},
  journal = {arXiv},
  year={2018}
}
```

## Other

### YOEO — You Only Encode Once

[YOEO](https://github.com/bit-bots/YOEO) extends this repo with the ability to train an additional semantic segmentation decoder. The lightweight example model is mainly targeted towards embedded real-time applications.


%package -n python3-pytorchyolo
Summary:	Minimal PyTorch implementation of YOLO
Provides:	python-pytorchyolo
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pytorchyolo
# PyTorch YOLO
A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

YOLOv4 and YOLOv7 weights are also compatible with this implementation.

[![CI](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml/badge.svg)](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/pytorchyolo.svg)](https://pypi.python.org/pypi/pytorchyolo/) [![PyPI license](https://img.shields.io/pypi/l/pytorchyolo.svg)](LICENSE)

## Installation
### Installing from source

For normal training and evaluation we recommend installing the package from source using a poetry virtual environment.

```bash
git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
cd PyTorch-YOLOv3/
pip3 install poetry --user
poetry install
```

You need to join the virtual environment by running `poetry shell` in this directory before running any of the following commands without the `poetry run` prefix.
Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.

#### Download pretrained weights

```bash
./weights/download_weights.sh
```

#### Download COCO

```bash
./data/get_coco_dataset.sh
```

### Install via pip

This installation method is recommended, if you want to use this package as a dependency in another python project.
This method only includes the code, is less isolated and may conflict with other packages.
Weights and the COCO dataset need to be downloaded as stated above.
See __API__ for further information regarding the packages API.
It also enables the CLI tools `yolo-detect`, `yolo-train`, and `yolo-test` everywhere without any additional commands.

```bash
pip3 install pytorchyolo --user
```

## Test
Evaluates the model on COCO test dataset.
To download this dataset as well as weights, see above.

```bash
poetry run yolo-test --weights weights/yolov3.weights
```

| Model                   | mAP (min. 50 IoU) |
| ----------------------- |:-----------------:|
| YOLOv3 608 (paper)      | 57.9              |
| YOLOv3 608 (this impl.) | 57.3              |
| YOLOv3 416 (paper)      | 55.3              |
| YOLOv3 416 (this impl.) | 55.5              |

## Inference
Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.

| Backbone                | GPU      | FPS      |
| ----------------------- |:--------:|:--------:|
| ResNet-101              | Titan X  | 53       |
| ResNet-152              | Titan X  | 37       |
| Darknet-53 (paper)      | Titan X  | 76       |
| Darknet-53 (this impl.) | 1080ti   | 74       |

```bash
poetry run yolo-detect --images data/samples/
```

<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/giraffe.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/dog.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/traffic.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/messi.png" width="480"\></p>

## Train
For argument descriptions have a look at `poetry run yolo-train --help`

#### Example (COCO)
To train on COCO using a Darknet-53 backend pretrained on ImageNet run:

```bash
poetry run yolo-train --data config/coco.data  --pretrained_weights weights/darknet53.conv.74
```

#### Tensorboard
Track training progress in Tensorboard:
* Initialize training
* Run the command below
* Go to http://localhost:6006/

```bash
poetry run tensorboard --logdir='logs' --port=6006
```

Storing the logs on a slow drive possibly leads to a significant training speed decrease.

You can adjust the log directory using `--logdir <path>` when running `tensorboard` and `yolo-train`.

## Train on Custom Dataset

#### Custom model
Run the commands below to create a custom model definition, replacing `<num-classes>` with the number of classes in your dataset.

```bash
./config/create_custom_model.sh <num-classes>  # Will create custom model 'yolov3-custom.cfg'
```

#### Classes
Add class names to `data/custom/classes.names`. This file should have one row per class name.

#### Image Folder
Move the images of your dataset to `data/custom/images/`.

#### Annotation Folder
Move your annotations to `data/custom/labels/`. The dataloader expects that the annotation file corresponding to the image `data/custom/images/train.jpg` has the path `data/custom/labels/train.txt`. Each row in the annotation file should define one bounding box, using the syntax `label_idx x_center y_center width height`. The coordinates should be scaled `[0, 1]`, and the `label_idx` should be zero-indexed and correspond to the row number of the class name in `data/custom/classes.names`.

#### Define Train and Validation Sets
In `data/custom/train.txt` and `data/custom/valid.txt`, add paths to images that will be used as train and validation data respectively.

#### Train
To train on the custom dataset run:

```bash
poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data
```

Add `--pretrained_weights weights/darknet53.conv.74` to train using a backend pretrained on ImageNet.


## API

You are able to import the modules of this repo in your own project if you install the pip package `pytorchyolo`.

An example prediction call from a simple OpenCV python script would look like this:

```python
import cv2
from pytorchyolo import detect, models

# Load the YOLO model
model = models.load_model(
  "<PATH_TO_YOUR_CONFIG_FOLDER>/yolov3.cfg",
  "<PATH_TO_YOUR_WEIGHTS_FOLDER>/yolov3.weights")

# Load the image as a numpy array
img = cv2.imread("<PATH_TO_YOUR_IMAGE>")

# Convert OpenCV bgr to rgb
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# Runs the YOLO model on the image
boxes = detect.detect_image(model, img)

print(boxes)
# Output will be a numpy array in the following format:
# [[x1, y1, x2, y2, confidence, class]]
```

For more advanced usage look at the method's doc strings.

## Credit

### YOLOv3: An Incremental Improvement
_Joseph Redmon, Ali Farhadi_ <br>

**Abstract** <br>
We present some updates to YOLO! We made a bunch
of little design changes to make it better. We also trained
this new network that’s pretty swell. It’s a little bigger than
last time but more accurate. It’s still fast though, don’t
worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP,
as accurate as SSD but three times faster. When we look
at the old .5 IOU mAP detection metric YOLOv3 is quite
good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared
to 57.5 AP50 in 198 ms by RetinaNet, similar performance
but 3.8× faster. As always, all the code is online at
https://pjreddie.com/yolo/.

[[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Project Webpage]](https://pjreddie.com/darknet/yolo/) [[Authors' Implementation]](https://github.com/pjreddie/darknet)

```
@article{yolov3,
  title={YOLOv3: An Incremental Improvement},
  author={Redmon, Joseph and Farhadi, Ali},
  journal = {arXiv},
  year={2018}
}
```

## Other

### YOEO — You Only Encode Once

[YOEO](https://github.com/bit-bots/YOEO) extends this repo with the ability to train an additional semantic segmentation decoder. The lightweight example model is mainly targeted towards embedded real-time applications.


%package help
Summary:	Development documents and examples for pytorchyolo
Provides:	python3-pytorchyolo-doc
%description help
# PyTorch YOLO
A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

YOLOv4 and YOLOv7 weights are also compatible with this implementation.

[![CI](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml/badge.svg)](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/pytorchyolo.svg)](https://pypi.python.org/pypi/pytorchyolo/) [![PyPI license](https://img.shields.io/pypi/l/pytorchyolo.svg)](LICENSE)

## Installation
### Installing from source

For normal training and evaluation we recommend installing the package from source using a poetry virtual environment.

```bash
git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
cd PyTorch-YOLOv3/
pip3 install poetry --user
poetry install
```

You need to join the virtual environment by running `poetry shell` in this directory before running any of the following commands without the `poetry run` prefix.
Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.

#### Download pretrained weights

```bash
./weights/download_weights.sh
```

#### Download COCO

```bash
./data/get_coco_dataset.sh
```

### Install via pip

This installation method is recommended, if you want to use this package as a dependency in another python project.
This method only includes the code, is less isolated and may conflict with other packages.
Weights and the COCO dataset need to be downloaded as stated above.
See __API__ for further information regarding the packages API.
It also enables the CLI tools `yolo-detect`, `yolo-train`, and `yolo-test` everywhere without any additional commands.

```bash
pip3 install pytorchyolo --user
```

## Test
Evaluates the model on COCO test dataset.
To download this dataset as well as weights, see above.

```bash
poetry run yolo-test --weights weights/yolov3.weights
```

| Model                   | mAP (min. 50 IoU) |
| ----------------------- |:-----------------:|
| YOLOv3 608 (paper)      | 57.9              |
| YOLOv3 608 (this impl.) | 57.3              |
| YOLOv3 416 (paper)      | 55.3              |
| YOLOv3 416 (this impl.) | 55.5              |

## Inference
Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.

| Backbone                | GPU      | FPS      |
| ----------------------- |:--------:|:--------:|
| ResNet-101              | Titan X  | 53       |
| ResNet-152              | Titan X  | 37       |
| Darknet-53 (paper)      | Titan X  | 76       |
| Darknet-53 (this impl.) | 1080ti   | 74       |

```bash
poetry run yolo-detect --images data/samples/
```

<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/giraffe.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/dog.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/traffic.png" width="480"\></p>
<p align="center"><img src="https://github.com/eriklindernoren/PyTorch-YOLOv3/raw/master/assets/messi.png" width="480"\></p>

## Train
For argument descriptions have a look at `poetry run yolo-train --help`

#### Example (COCO)
To train on COCO using a Darknet-53 backend pretrained on ImageNet run:

```bash
poetry run yolo-train --data config/coco.data  --pretrained_weights weights/darknet53.conv.74
```

#### Tensorboard
Track training progress in Tensorboard:
* Initialize training
* Run the command below
* Go to http://localhost:6006/

```bash
poetry run tensorboard --logdir='logs' --port=6006
```

Storing the logs on a slow drive possibly leads to a significant training speed decrease.

You can adjust the log directory using `--logdir <path>` when running `tensorboard` and `yolo-train`.

## Train on Custom Dataset

#### Custom model
Run the commands below to create a custom model definition, replacing `<num-classes>` with the number of classes in your dataset.

```bash
./config/create_custom_model.sh <num-classes>  # Will create custom model 'yolov3-custom.cfg'
```

#### Classes
Add class names to `data/custom/classes.names`. This file should have one row per class name.

#### Image Folder
Move the images of your dataset to `data/custom/images/`.

#### Annotation Folder
Move your annotations to `data/custom/labels/`. The dataloader expects that the annotation file corresponding to the image `data/custom/images/train.jpg` has the path `data/custom/labels/train.txt`. Each row in the annotation file should define one bounding box, using the syntax `label_idx x_center y_center width height`. The coordinates should be scaled `[0, 1]`, and the `label_idx` should be zero-indexed and correspond to the row number of the class name in `data/custom/classes.names`.

#### Define Train and Validation Sets
In `data/custom/train.txt` and `data/custom/valid.txt`, add paths to images that will be used as train and validation data respectively.

#### Train
To train on the custom dataset run:

```bash
poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data
```

Add `--pretrained_weights weights/darknet53.conv.74` to train using a backend pretrained on ImageNet.


## API

You are able to import the modules of this repo in your own project if you install the pip package `pytorchyolo`.

An example prediction call from a simple OpenCV python script would look like this:

```python
import cv2
from pytorchyolo import detect, models

# Load the YOLO model
model = models.load_model(
  "<PATH_TO_YOUR_CONFIG_FOLDER>/yolov3.cfg",
  "<PATH_TO_YOUR_WEIGHTS_FOLDER>/yolov3.weights")

# Load the image as a numpy array
img = cv2.imread("<PATH_TO_YOUR_IMAGE>")

# Convert OpenCV bgr to rgb
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# Runs the YOLO model on the image
boxes = detect.detect_image(model, img)

print(boxes)
# Output will be a numpy array in the following format:
# [[x1, y1, x2, y2, confidence, class]]
```

For more advanced usage look at the method's doc strings.

## Credit

### YOLOv3: An Incremental Improvement
_Joseph Redmon, Ali Farhadi_ <br>

**Abstract** <br>
We present some updates to YOLO! We made a bunch
of little design changes to make it better. We also trained
this new network that’s pretty swell. It’s a little bigger than
last time but more accurate. It’s still fast though, don’t
worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP,
as accurate as SSD but three times faster. When we look
at the old .5 IOU mAP detection metric YOLOv3 is quite
good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared
to 57.5 AP50 in 198 ms by RetinaNet, similar performance
but 3.8× faster. As always, all the code is online at
https://pjreddie.com/yolo/.

[[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Project Webpage]](https://pjreddie.com/darknet/yolo/) [[Authors' Implementation]](https://github.com/pjreddie/darknet)

```
@article{yolov3,
  title={YOLOv3: An Incremental Improvement},
  author={Redmon, Joseph and Farhadi, Ali},
  journal = {arXiv},
  year={2018}
}
```

## Other

### YOEO — You Only Encode Once

[YOEO](https://github.com/bit-bots/YOEO) extends this repo with the ability to train an additional semantic segmentation decoder. The lightweight example model is mainly targeted towards embedded real-time applications.


%prep
%autosetup -n pytorchyolo-1.8.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pytorchyolo -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.0-1
- Package Spec generated