1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
%global _empty_manifest_terminate_build 0
Name: python-qibo
Version: 0.1.14
Release: 1
Summary: A framework for quantum computing with hardware acceleration.
License: Apache-2.0
URL: https://qibo.science/
Source0: https://mirrors.aliyun.com/pypi/web/packages/74/c6/9011f04a234daf4f98f088bf56318c5b7e6d812a8b75fdf4cac41a3d6052/qibo-0.1.14.tar.gz
BuildArch: noarch
Requires: python3-cma
Requires: python3-joblib
Requires: python3-matplotlib
Requires: python3-psutil
Requires: python3-scipy
Requires: python3-sympy
Requires: python3-tabulate
%description


[](https://codecov.io/gh/qiboteam/qibo)
[](https://qibo.readthedocs.io/en/latest/?badge=latest)
[](https://zenodo.org/badge/latestdoi/241307936)
Qibo is an open-source full stack API for quantum simulation and quantum hardware control.
Some of the key features of Qibo are:
- Definition of a standard language for the construction and execution of quantum circuits with device agnostic approach to simulation and quantum hardware control based on plug and play backend drivers.
- A continuously growing code-base of quantum algorithms applications presented with examples and tutorials.
- Efficient simulation backends with GPU, multi-GPU and CPU with multi-threading support.
- Simple mechanism for the implementation of new simulation and hardware backend drivers.
## Documentation
Qibo documentation is available [here](https://qibo.science).
## Minimum Working Examples
A simple [Quantum Fourier Transform (QFT)](https://en.wikipedia.org/wiki/Quantum_Fourier_transform) example to test your installation:
```python
from qibo.models import QFT
# Create a QFT circuit with 15 qubits
circuit = QFT(15)
# Simulate final state wavefunction default initial state is |00>
final_state = circuit()
```
Here another example with more gates and shots simulation:
```python
import numpy as np
from qibo.models import Circuit
from qibo import gates
c = Circuit(2)
c.add(gates.X(0))
# Add a measurement register on both qubits
c.add(gates.M(0, 1))
# Execute the circuit with the default initial state |00>.
result = c(nshots=100)
```
In both cases, the simulation will run in a single device CPU or GPU in double precision `complex128`.
## Citation policy
If you use the package please refer to [the documentation](https://qibo.science/qibo/stable/appendix/citing-qibo.html#publications) for citation instructions.
## Supporters and collaborators
- Quantum Research Center, Technology Innovation Institute (TII), United Arab Emirates
- Università degli Studi di Milano (UNIMI), Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Italy.
- European Organization for Nuclear research (CERN), Switzerland.
- Universitat de Barcelona (UB), Spain.
- Barcelona Supercomputing Center (BSC), Spain.
- Qilimanjaro Quantum Tech, Spain.
- Centre for Quantum Technologies (CQT), Singapore.
- Institute of High Performance Computing (IHPC), Singapore.
- National Supercomputing Centre (NSCC), Singapore.
- RIKEN Center for Computational Science (R-CCS), Japan.
- NVIDIA (cuQuantum), USA.
%package -n python3-qibo
Summary: A framework for quantum computing with hardware acceleration.
Provides: python-qibo
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-qibo


[](https://codecov.io/gh/qiboteam/qibo)
[](https://qibo.readthedocs.io/en/latest/?badge=latest)
[](https://zenodo.org/badge/latestdoi/241307936)
Qibo is an open-source full stack API for quantum simulation and quantum hardware control.
Some of the key features of Qibo are:
- Definition of a standard language for the construction and execution of quantum circuits with device agnostic approach to simulation and quantum hardware control based on plug and play backend drivers.
- A continuously growing code-base of quantum algorithms applications presented with examples and tutorials.
- Efficient simulation backends with GPU, multi-GPU and CPU with multi-threading support.
- Simple mechanism for the implementation of new simulation and hardware backend drivers.
## Documentation
Qibo documentation is available [here](https://qibo.science).
## Minimum Working Examples
A simple [Quantum Fourier Transform (QFT)](https://en.wikipedia.org/wiki/Quantum_Fourier_transform) example to test your installation:
```python
from qibo.models import QFT
# Create a QFT circuit with 15 qubits
circuit = QFT(15)
# Simulate final state wavefunction default initial state is |00>
final_state = circuit()
```
Here another example with more gates and shots simulation:
```python
import numpy as np
from qibo.models import Circuit
from qibo import gates
c = Circuit(2)
c.add(gates.X(0))
# Add a measurement register on both qubits
c.add(gates.M(0, 1))
# Execute the circuit with the default initial state |00>.
result = c(nshots=100)
```
In both cases, the simulation will run in a single device CPU or GPU in double precision `complex128`.
## Citation policy
If you use the package please refer to [the documentation](https://qibo.science/qibo/stable/appendix/citing-qibo.html#publications) for citation instructions.
## Supporters and collaborators
- Quantum Research Center, Technology Innovation Institute (TII), United Arab Emirates
- Università degli Studi di Milano (UNIMI), Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Italy.
- European Organization for Nuclear research (CERN), Switzerland.
- Universitat de Barcelona (UB), Spain.
- Barcelona Supercomputing Center (BSC), Spain.
- Qilimanjaro Quantum Tech, Spain.
- Centre for Quantum Technologies (CQT), Singapore.
- Institute of High Performance Computing (IHPC), Singapore.
- National Supercomputing Centre (NSCC), Singapore.
- RIKEN Center for Computational Science (R-CCS), Japan.
- NVIDIA (cuQuantum), USA.
%package help
Summary: Development documents and examples for qibo
Provides: python3-qibo-doc
%description help


[](https://codecov.io/gh/qiboteam/qibo)
[](https://qibo.readthedocs.io/en/latest/?badge=latest)
[](https://zenodo.org/badge/latestdoi/241307936)
Qibo is an open-source full stack API for quantum simulation and quantum hardware control.
Some of the key features of Qibo are:
- Definition of a standard language for the construction and execution of quantum circuits with device agnostic approach to simulation and quantum hardware control based on plug and play backend drivers.
- A continuously growing code-base of quantum algorithms applications presented with examples and tutorials.
- Efficient simulation backends with GPU, multi-GPU and CPU with multi-threading support.
- Simple mechanism for the implementation of new simulation and hardware backend drivers.
## Documentation
Qibo documentation is available [here](https://qibo.science).
## Minimum Working Examples
A simple [Quantum Fourier Transform (QFT)](https://en.wikipedia.org/wiki/Quantum_Fourier_transform) example to test your installation:
```python
from qibo.models import QFT
# Create a QFT circuit with 15 qubits
circuit = QFT(15)
# Simulate final state wavefunction default initial state is |00>
final_state = circuit()
```
Here another example with more gates and shots simulation:
```python
import numpy as np
from qibo.models import Circuit
from qibo import gates
c = Circuit(2)
c.add(gates.X(0))
# Add a measurement register on both qubits
c.add(gates.M(0, 1))
# Execute the circuit with the default initial state |00>.
result = c(nshots=100)
```
In both cases, the simulation will run in a single device CPU or GPU in double precision `complex128`.
## Citation policy
If you use the package please refer to [the documentation](https://qibo.science/qibo/stable/appendix/citing-qibo.html#publications) for citation instructions.
## Supporters and collaborators
- Quantum Research Center, Technology Innovation Institute (TII), United Arab Emirates
- Università degli Studi di Milano (UNIMI), Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Italy.
- European Organization for Nuclear research (CERN), Switzerland.
- Universitat de Barcelona (UB), Spain.
- Barcelona Supercomputing Center (BSC), Spain.
- Qilimanjaro Quantum Tech, Spain.
- Centre for Quantum Technologies (CQT), Singapore.
- Institute of High Performance Computing (IHPC), Singapore.
- National Supercomputing Centre (NSCC), Singapore.
- RIKEN Center for Computational Science (R-CCS), Japan.
- NVIDIA (cuQuantum), USA.
%prep
%autosetup -n qibo-0.1.14
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-qibo -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.14-1
- Package Spec generated
|