summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-qiskit-machine-learning.spec235
-rw-r--r--sources1
3 files changed, 237 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..f888bf5 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/qiskit-machine-learning-0.6.1.tar.gz
diff --git a/python-qiskit-machine-learning.spec b/python-qiskit-machine-learning.spec
new file mode 100644
index 0000000..f46608f
--- /dev/null
+++ b/python-qiskit-machine-learning.spec
@@ -0,0 +1,235 @@
+%global _empty_manifest_terminate_build 0
+Name: python-qiskit-machine-learning
+Version: 0.6.1
+Release: 1
+Summary: Qiskit Machine Learning: A library of quantum computing machine learning experiments
+License: Apache-2.0
+URL: https://github.com/Qiskit/qiskit-machine-learning
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/09/c6/502e29169953df4a7c3f8539858d3546877198bf7cafa6318361d5d381c4/qiskit-machine-learning-0.6.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-qiskit-terra
+Requires: python3-scipy
+Requires: python3-numpy
+Requires: python3-psutil
+Requires: python3-scikit-learn
+Requires: python3-fastdtw
+Requires: python3-setuptools
+Requires: python3-dill
+Requires: python3-sparse
+Requires: python3-torch
+
+%description
+### Optional Installs
+* **PyTorch**, may be installed either using command `pip install 'qiskit-machine-learning[torch]'` to install the
+ package or refer to PyTorch [getting started](https://pytorch.org/get-started/locally/). When PyTorch
+ is installed, the `TorchConnector` facilitates its use of quantum computed networks.
+* **Sparse**, may be installed using command `pip install 'qiskit-machine-learning[sparse]'` to install the
+ package. Sparse being installed will enable the usage of sparse arrays/tensors.
+### Creating Your First Machine Learning Programming Experiment in Qiskit
+Now that Qiskit Machine Learning is installed, it's time to begin working with the Machine Learning module.
+Let's try an experiment using VQC (Variational Quantum Classifier) algorithm to
+train and test samples from a data set to see how accurately the test set can
+be classified.
+```python
+from qiskit.algorithms.optimizers import COBYLA
+from qiskit.circuit.library import TwoLocal, ZZFeatureMap
+from qiskit.utils import algorithm_globals
+from qiskit_machine_learning.algorithms import VQC
+from qiskit_machine_learning.datasets import ad_hoc_data
+seed = 1376
+algorithm_globals.random_seed = seed
+# Use ad hoc data set for training and test data
+feature_dim = 2 # dimension of each data point
+training_size = 20
+test_size = 10
+# training features, training labels, test features, test labels as np.ndarray,
+# one hot encoding for labels
+training_features, training_labels, test_features, test_labels = ad_hoc_data(
+ training_size=training_size, test_size=test_size, n=feature_dim, gap=0.3
+)
+feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement="linear")
+ansatz = TwoLocal(feature_map.num_qubits, ["ry", "rz"], "cz", reps=3)
+vqc = VQC(
+ feature_map=feature_map,
+ ansatz=ansatz,
+ optimizer=COBYLA(maxiter=100),
+)
+vqc.fit(training_features, training_labels)
+score = vqc.score(test_features, test_labels)
+print(f"Testing accuracy: {score:0.2f}")
+```
+### Further examples
+Learning path notebooks may be found in the
+[Machine Learning tutorials](https://qiskit.org/documentation/machine-learning/tutorials/index.html) section
+of the documentation and are a great place to start.
+Another good place to learn the fundamentals of quantum machine learning is the
+[Quantum Machine Learning](https://learn.qiskit.org/course/machine-learning/introduction) course
+on the Qiskit Textbook's website. The course is very convenient for beginners who are eager to learn
+quantum machine learning from scratch, as well as understand the background and theory behind algorithms in
+Qiskit Machine Learning. The course covers a variety of topics to build understanding of parameterized
+circuits, data encoding, variational algorithms etc., and in the end the ultimate goal of machine
+learning - how to build and train quantum ML models for supervised and unsupervised learning.
+The textbook course is complementary to the tutorials of this module, where the tutorials focus
+on actual Qiskit Machine Learning algorithms, the course more explains and details underlying fundamentals
+
+%package -n python3-qiskit-machine-learning
+Summary: Qiskit Machine Learning: A library of quantum computing machine learning experiments
+Provides: python-qiskit-machine-learning
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-qiskit-machine-learning
+### Optional Installs
+* **PyTorch**, may be installed either using command `pip install 'qiskit-machine-learning[torch]'` to install the
+ package or refer to PyTorch [getting started](https://pytorch.org/get-started/locally/). When PyTorch
+ is installed, the `TorchConnector` facilitates its use of quantum computed networks.
+* **Sparse**, may be installed using command `pip install 'qiskit-machine-learning[sparse]'` to install the
+ package. Sparse being installed will enable the usage of sparse arrays/tensors.
+### Creating Your First Machine Learning Programming Experiment in Qiskit
+Now that Qiskit Machine Learning is installed, it's time to begin working with the Machine Learning module.
+Let's try an experiment using VQC (Variational Quantum Classifier) algorithm to
+train and test samples from a data set to see how accurately the test set can
+be classified.
+```python
+from qiskit.algorithms.optimizers import COBYLA
+from qiskit.circuit.library import TwoLocal, ZZFeatureMap
+from qiskit.utils import algorithm_globals
+from qiskit_machine_learning.algorithms import VQC
+from qiskit_machine_learning.datasets import ad_hoc_data
+seed = 1376
+algorithm_globals.random_seed = seed
+# Use ad hoc data set for training and test data
+feature_dim = 2 # dimension of each data point
+training_size = 20
+test_size = 10
+# training features, training labels, test features, test labels as np.ndarray,
+# one hot encoding for labels
+training_features, training_labels, test_features, test_labels = ad_hoc_data(
+ training_size=training_size, test_size=test_size, n=feature_dim, gap=0.3
+)
+feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement="linear")
+ansatz = TwoLocal(feature_map.num_qubits, ["ry", "rz"], "cz", reps=3)
+vqc = VQC(
+ feature_map=feature_map,
+ ansatz=ansatz,
+ optimizer=COBYLA(maxiter=100),
+)
+vqc.fit(training_features, training_labels)
+score = vqc.score(test_features, test_labels)
+print(f"Testing accuracy: {score:0.2f}")
+```
+### Further examples
+Learning path notebooks may be found in the
+[Machine Learning tutorials](https://qiskit.org/documentation/machine-learning/tutorials/index.html) section
+of the documentation and are a great place to start.
+Another good place to learn the fundamentals of quantum machine learning is the
+[Quantum Machine Learning](https://learn.qiskit.org/course/machine-learning/introduction) course
+on the Qiskit Textbook's website. The course is very convenient for beginners who are eager to learn
+quantum machine learning from scratch, as well as understand the background and theory behind algorithms in
+Qiskit Machine Learning. The course covers a variety of topics to build understanding of parameterized
+circuits, data encoding, variational algorithms etc., and in the end the ultimate goal of machine
+learning - how to build and train quantum ML models for supervised and unsupervised learning.
+The textbook course is complementary to the tutorials of this module, where the tutorials focus
+on actual Qiskit Machine Learning algorithms, the course more explains and details underlying fundamentals
+
+%package help
+Summary: Development documents and examples for qiskit-machine-learning
+Provides: python3-qiskit-machine-learning-doc
+%description help
+### Optional Installs
+* **PyTorch**, may be installed either using command `pip install 'qiskit-machine-learning[torch]'` to install the
+ package or refer to PyTorch [getting started](https://pytorch.org/get-started/locally/). When PyTorch
+ is installed, the `TorchConnector` facilitates its use of quantum computed networks.
+* **Sparse**, may be installed using command `pip install 'qiskit-machine-learning[sparse]'` to install the
+ package. Sparse being installed will enable the usage of sparse arrays/tensors.
+### Creating Your First Machine Learning Programming Experiment in Qiskit
+Now that Qiskit Machine Learning is installed, it's time to begin working with the Machine Learning module.
+Let's try an experiment using VQC (Variational Quantum Classifier) algorithm to
+train and test samples from a data set to see how accurately the test set can
+be classified.
+```python
+from qiskit.algorithms.optimizers import COBYLA
+from qiskit.circuit.library import TwoLocal, ZZFeatureMap
+from qiskit.utils import algorithm_globals
+from qiskit_machine_learning.algorithms import VQC
+from qiskit_machine_learning.datasets import ad_hoc_data
+seed = 1376
+algorithm_globals.random_seed = seed
+# Use ad hoc data set for training and test data
+feature_dim = 2 # dimension of each data point
+training_size = 20
+test_size = 10
+# training features, training labels, test features, test labels as np.ndarray,
+# one hot encoding for labels
+training_features, training_labels, test_features, test_labels = ad_hoc_data(
+ training_size=training_size, test_size=test_size, n=feature_dim, gap=0.3
+)
+feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement="linear")
+ansatz = TwoLocal(feature_map.num_qubits, ["ry", "rz"], "cz", reps=3)
+vqc = VQC(
+ feature_map=feature_map,
+ ansatz=ansatz,
+ optimizer=COBYLA(maxiter=100),
+)
+vqc.fit(training_features, training_labels)
+score = vqc.score(test_features, test_labels)
+print(f"Testing accuracy: {score:0.2f}")
+```
+### Further examples
+Learning path notebooks may be found in the
+[Machine Learning tutorials](https://qiskit.org/documentation/machine-learning/tutorials/index.html) section
+of the documentation and are a great place to start.
+Another good place to learn the fundamentals of quantum machine learning is the
+[Quantum Machine Learning](https://learn.qiskit.org/course/machine-learning/introduction) course
+on the Qiskit Textbook's website. The course is very convenient for beginners who are eager to learn
+quantum machine learning from scratch, as well as understand the background and theory behind algorithms in
+Qiskit Machine Learning. The course covers a variety of topics to build understanding of parameterized
+circuits, data encoding, variational algorithms etc., and in the end the ultimate goal of machine
+learning - how to build and train quantum ML models for supervised and unsupervised learning.
+The textbook course is complementary to the tutorials of this module, where the tutorials focus
+on actual Qiskit Machine Learning algorithms, the course more explains and details underlying fundamentals
+
+%prep
+%autosetup -n qiskit-machine-learning-0.6.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-qiskit-machine-learning -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..36ba9a2
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+9d0e8d42754d9fa9c61ff47557dd043f qiskit-machine-learning-0.6.1.tar.gz