summaryrefslogtreecommitdiff
path: root/python-reclearn.spec
blob: 191a77ecafff2aeb663a5d7802d01d91403e42d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
%global _empty_manifest_terminate_build 0
Name:		python-reclearn
Version:	1.1.0
Release:	1
Summary:	A simple package about learning recommendation
License:	MIT
URL:		https://github.com/ZiyaoGeng/RecLearn
Source0:	https://mirrors.aliyun.com/pypi/web/packages/20/1b/7418016d4febdfef54b57359b747fed954ba8b775c4f974921a1c128fbe1/reclearn-1.1.0.tar.gz
BuildArch:	noarch


%description
<div>
  <img src='https://cdn.jsdelivr.net/gh/BlackSpaceGZY/cdn/img/logo.jpg' width='36%'/>
</div>

## RecLearn

<p align="left">
  <img src='https://img.shields.io/badge/python-3.8+-blue'>
  <img src='https://img.shields.io/badge/Tensorflow-2.5+-blue'>
  <img src='https://img.shields.io/badge/License-MIT-blue'>
  <img src='https://img.shields.io/badge/NumPy-1.17-brightgreen'>
  <img src='https://img.shields.io/badge/pandas-1.0.5-brightgreen'>
  <img src='https://img.shields.io/badge/sklearn-0.23.2-brightgreen'>
</p> 

[简体中文](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/blob/reclearn/README_CN.md) | [English](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/reclearn)

RecLearn (Recommender Learning)  which summarizes the contents of the [master](https://github.com/ZiyaoGeng/RecLearn/tree/master) branch in  `Recommender System with TF2.0 `  is a recommended learning framework based on Python and TensorFlow2.x for students and beginners. **Of course, if you are more comfortable with the master branch, you can clone the entire package, run some algorithms in example, and also update and modify the content of model and layer**. The implemented recommendation algorithms are classified according to two application stages in the industry:

- matching recommendation stage (Top-k Recmmendation)
- ranking  recommendeation stage (CTR predict model)



## Update

**04/23/2022**: update all matching model.



## Installation

### Package

RecLearn is on PyPI, so you can use pip to install it.

```
pip install reclearn
```

dependent environment:

- python3.8+
- Tensorflow2.5-GPU+/Tensorflow2.5-CPU+
- sklearn0.23+

### Local

Clone Reclearn to local:

```shell
git clone -b reclearn git@github.com:ZiyaoGeng/RecLearn.git
```



## Quick Start

In [example](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/reclearn/example), we have given a demo of each of the recommended models.

### Matching

**1. Divide the dataset.**

Set the path of the raw dataset:

```python
file_path = 'data/ml-1m/ratings.dat'
```

Please divide the current dataset into training dataset, validation dataset and test dataset. If you use `movielens-1m`, `Amazon-Beauty`, `Amazon-Games` and `STEAM`, you can call method `data/datasets/*` of RecLearn directly:

```python
train_path, val_path, test_path, meta_path = ml.split_seq_data(file_path=file_path)
```

`meta_path` indicates the path of the metafile, which stores the maximum number of user and item indexes.

**2. Load the dataset.**

Complete the loading of training dataset, validation dataset and test dataset, and generate several negative samples (random sampling) for each positive sample. The format of data is dictionary:

```python
data = {'pos_item':, 'neg_item': , ['user': , 'click_seq': ,...]}
```

If you're building a sequential recommendation model, you need to introduce click sequences. Reclearn provides methods for loading the data for the above four datasets:

```python
# general recommendation model
train_data = ml.load_data(train_path, neg_num, max_item_num)
# sequence recommendation model, and use the user feature.
train_data = ml.load_seq_data(train_path, "train", seq_len, neg_num, max_item_num, contain_user=True)
```

**3. Set hyper-parameters.**

The model needs to specify the required hyperparameters. Now, we take `BPR` model as an example:

```python
model_params = {
        'user_num': max_user_num + 1,
        'item_num': max_item_num + 1,
        'embed_dim': FLAGS.embed_dim,
        'use_l2norm': FLAGS.use_l2norm,
        'embed_reg': FLAGS.embed_reg
    }
```

**4. Build and compile the model.**

Select or build the model you need and compile it. Take 'BPR' as an example:

```python
model = BPR(**model_params)
model.compile(optimizer=Adam(learning_rate=FLAGS.learning_rate))
```

If you have problems with the structure of the model, you can call the summary method after compilation to print it out:

```python
model.summary()
```

**5. Learn the model and predict test dataset.**

```python
for epoch in range(1, epochs + 1):
    t1 = time()
    model.fit(
        x=train_data,
        epochs=1,
        validation_data=val_data,
        batch_size=batch_size
    )
    t2 = time()
    eval_dict = eval_pos_neg(model, test_data, ['hr', 'mrr', 'ndcg'], k, batch_size)
    print('Iteration %d Fit [%.1f s], Evaluate [%.1f s]: HR = %.4f, MRR = %.4f, NDCG = %.4f'
          % (epoch, t2 - t1, time() - t2, eval_dict['hr'], eval_dict['mrr'], eval_dict['ndcg']))
```

### Ranking

Waiting......



## Results

The experimental environment designed by Reclearn is different from that of some papers, so there may be some deviation in the results. Please refer to [Experiement](./docs/experiment.md) for details.

### Matching

<table style="text-align:center;margin:auto">
  <tr></tr>
  <tr>
    <th rowspan="2">Model</th>
    <th colspan="3">ml-1m</th>
    <th colspan="3">Beauty</th>
    <th colspan="3">STEAM</th>
  </tr>
  <tr>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
  </tr>
  <tr><td>BPR</td><td>0.5768</td><td>0.2392</td><td>0.3016</td><td>0.3708</td><td>0.2108</td><td>0.2485</td><td>0.7728</td><td>0.4220</td><td>0.5054</td></tr>
  <tr><td>NCF</td><td>0.5834</td><td>0.2219</td><td>0.3060</td><td>0.5448</td><td>0.2831</td><td>0.3451</td><td>0.7768</td><td>0.4273</td><td>0.5103</td></tr>
  <tr><td>DSSM</td><td>0.5498</td><td>0.2148</td><td>0.2929</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>YoutubeDNN</td><td>0.6737</td><td>0.3414</td><td>0.4201</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>GRU4Rec</td><td>0.7969</td><td>0.4698</td><td>0.5483</td><td>0.5211</td><td>0.2724</td><td>0.3312</td><td>0.8501</td><td>0.5486</td><td>0.6209</td></tr>
  <tr><td>Caser</td><td>0.7916</td><td>0.4450</td><td>0.5280</td><td>0.5487</td><td>0.2884</td><td>0.3501</td><td>0.8275</td><td>0.5064</td><td>0.5832</td></tr>
  <tr><td>SASRec</td><td>0.8103</td><td>0.4812</td><td>0.5605</td><td>0.5230</td><td>0.2781</td><td>0.3355</td><td>0.8606</td><td>0.5669</td><td>0.6374</td></tr>
  <tr><td>AttRec</td><td>0.7873</td><td>0.4578</td><td>0.5363</td><td>0.4995</td><td>0.2695</td><td>0.3229</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>FISSA</td><td>0.8106</td><td>0.4953</td><td>0.5713</td><td>0.5431</td><td>0.2851</td><td>0.3462</td><td>0.8635</td><td>0.5682</td><td>0.6391</td></tr>
</table>



### Ranking

<table style="text-align:center;margin:auto">
  <tr></tr>
  <tr>
    <th rowspan="2">Model</th>
    <th colspan="2">500w(Criteo)</th>
    <th colspan="2">Criteo</th>
  </tr>
  <tr>
    <th>Log Loss</th>
    <th>AUC</th>
    <th>Log Loss</th>
    <th>AUC</th>
  </tr>
  <tr><td>FM</td><td>0.4765</td><td>0.7783</td><td>0.4762</td><td>0.7875</td></tr>
  <tr><td>FFM</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>WDL</td><td>0.4684</td><td>0.7822</td><td>0.4692</td><td>0.7930</td></tr>
  <tr><td>Deep Crossing</td><td>0.4670</td><td>0.7826</td><td>0.4693</td><td>0.7935</td></tr>
  <tr><td>PNN</td><td>-</td><td>0.7847</td><td>-</td><td>-</td></tr>
  <tr><td>DCN</td><td>-</td><td>0.7823</td><td>0.4691</td><td>0.7929</td></tr>
  <tr><td>NFM</td><td>0.4773</td><td>0.7762</td><td>0.4723</td><td>0.7889</td></tr>
  <tr><td>AFM</td><td>0.4819</td><td>0.7808</td><td>0.4692</td><td>0.7871</td></tr>
  <tr><td>DeepFM</td><td>-</td><td>0.7828</td><td>0.4650</td><td>0.8007</td></tr>
  <tr><td>xDeepFM</td><td>0.4690</td><td>0.7839</td><td>0.4696</td><td>0.7919</td></tr>
</table>


## Model List

### 1. Matching Stage

|                         Paper\|Model                         |  Published   |     Author     |
| :----------------------------------------------------------: | :----------: | :------------: |
| BPR: Bayesian Personalized Ranking from Implicit Feedback\|**MF-BPR** |  UAI, 2009   | Steffen Rendle  |
|    Neural network-based Collaborative Filtering\|**NCF**     |  WWW, 2017   |  Xiangnan He   |
| Learning Deep Structured Semantic Models for Web Search using Clickthrough Data\|**DSSM** |  CIKM, 2013  |  Po-Sen Huang  |
| Deep Neural Networks for YouTube Recommendations\| **YoutubeDNN** | RecSys, 2016 | Paul Covington |
| Session-based Recommendations with Recurrent Neural Networks\|**GUR4Rec** |  ICLR, 2016  | Balázs Hidasi  |
|     Self-Attentive Sequential Recommendation\|**SASRec**     |  ICDM, 2018  |      UCSD      |
| Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding\|**Caser** |  WSDM, 2018  |   Jiaxi Tang   |
| Next Item Recommendation with Self-Attentive Metric Learning\|**AttRec** | AAAAI, 2019  |  Shuai Zhang   |
| FISSA: Fusing Item Similarity Models with Self-Attention Networks for Sequential Recommendation\|**FISSA** | RecSys, 2020 |    Jing Lin    |

### 2. Ranking Stage

|                         Paper|Model                         |  Published   |                            Author                            |
| :----------------------------------------------------------: | :----------: | :----------------------------------------------------------: |
|                Factorization Machines\|**FM**                |  ICDM, 2010  |                        Steffen Rendle                        |
| Field-aware Factorization Machines for CTR Prediction|**FFM** | RecSys, 2016 |                       Criteo Research                        |
|    Wide & Deep Learning for Recommender Systems|**WDL**     |  DLRS, 2016  |                         Google Inc.                          |
| Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features\|**Deep Crossing** |  KDD, 2016   |                      Microsoft Research                      |
| Product-based Neural Networks for User Response Prediction\|**PNN** |  ICDM, 2016  |                Shanghai Jiao Tong University                 |
|    Deep & Cross Network for Ad Click Predictions|**DCN**    | ADKDD, 2017  |               Stanford University|Google Inc.               |
| Neural Factorization Machines for Sparse Predictive Analytics\|**NFM** | SIGIR, 2017  |                         Xiangnan He                          |
| Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks\|**AFM** | IJCAI, 2017  |    Zhejiang University\|National University of Singapore     |
| DeepFM: A Factorization-Machine based Neural Network for CTR Prediction\|**DeepFM** | IJCAI, 2017  | Harbin Institute of Technology\|Noah’s Ark Research Lab, Huawei |
| xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems\|**xDeepFM** |  KDD, 2018   |        University of Science and Technology of China         |
| Deep Interest Network for Click-Through Rate Prediction\|**DIN** |  KDD, 2018   |                        Alibaba Group                         |

## Discussion

1. If you have any suggestions or questions about the project, you can leave a comment on `Issue`.
2. wechat:

<div align=center><img src="https://cdn.jsdelivr.net/gh/BlackSpaceGZY/cdn/img/weixin.jpg" width="20%"/></div>





%package -n python3-reclearn
Summary:	A simple package about learning recommendation
Provides:	python-reclearn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-reclearn
<div>
  <img src='https://cdn.jsdelivr.net/gh/BlackSpaceGZY/cdn/img/logo.jpg' width='36%'/>
</div>

## RecLearn

<p align="left">
  <img src='https://img.shields.io/badge/python-3.8+-blue'>
  <img src='https://img.shields.io/badge/Tensorflow-2.5+-blue'>
  <img src='https://img.shields.io/badge/License-MIT-blue'>
  <img src='https://img.shields.io/badge/NumPy-1.17-brightgreen'>
  <img src='https://img.shields.io/badge/pandas-1.0.5-brightgreen'>
  <img src='https://img.shields.io/badge/sklearn-0.23.2-brightgreen'>
</p> 

[简体中文](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/blob/reclearn/README_CN.md) | [English](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/reclearn)

RecLearn (Recommender Learning)  which summarizes the contents of the [master](https://github.com/ZiyaoGeng/RecLearn/tree/master) branch in  `Recommender System with TF2.0 `  is a recommended learning framework based on Python and TensorFlow2.x for students and beginners. **Of course, if you are more comfortable with the master branch, you can clone the entire package, run some algorithms in example, and also update and modify the content of model and layer**. The implemented recommendation algorithms are classified according to two application stages in the industry:

- matching recommendation stage (Top-k Recmmendation)
- ranking  recommendeation stage (CTR predict model)



## Update

**04/23/2022**: update all matching model.



## Installation

### Package

RecLearn is on PyPI, so you can use pip to install it.

```
pip install reclearn
```

dependent environment:

- python3.8+
- Tensorflow2.5-GPU+/Tensorflow2.5-CPU+
- sklearn0.23+

### Local

Clone Reclearn to local:

```shell
git clone -b reclearn git@github.com:ZiyaoGeng/RecLearn.git
```



## Quick Start

In [example](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/reclearn/example), we have given a demo of each of the recommended models.

### Matching

**1. Divide the dataset.**

Set the path of the raw dataset:

```python
file_path = 'data/ml-1m/ratings.dat'
```

Please divide the current dataset into training dataset, validation dataset and test dataset. If you use `movielens-1m`, `Amazon-Beauty`, `Amazon-Games` and `STEAM`, you can call method `data/datasets/*` of RecLearn directly:

```python
train_path, val_path, test_path, meta_path = ml.split_seq_data(file_path=file_path)
```

`meta_path` indicates the path of the metafile, which stores the maximum number of user and item indexes.

**2. Load the dataset.**

Complete the loading of training dataset, validation dataset and test dataset, and generate several negative samples (random sampling) for each positive sample. The format of data is dictionary:

```python
data = {'pos_item':, 'neg_item': , ['user': , 'click_seq': ,...]}
```

If you're building a sequential recommendation model, you need to introduce click sequences. Reclearn provides methods for loading the data for the above four datasets:

```python
# general recommendation model
train_data = ml.load_data(train_path, neg_num, max_item_num)
# sequence recommendation model, and use the user feature.
train_data = ml.load_seq_data(train_path, "train", seq_len, neg_num, max_item_num, contain_user=True)
```

**3. Set hyper-parameters.**

The model needs to specify the required hyperparameters. Now, we take `BPR` model as an example:

```python
model_params = {
        'user_num': max_user_num + 1,
        'item_num': max_item_num + 1,
        'embed_dim': FLAGS.embed_dim,
        'use_l2norm': FLAGS.use_l2norm,
        'embed_reg': FLAGS.embed_reg
    }
```

**4. Build and compile the model.**

Select or build the model you need and compile it. Take 'BPR' as an example:

```python
model = BPR(**model_params)
model.compile(optimizer=Adam(learning_rate=FLAGS.learning_rate))
```

If you have problems with the structure of the model, you can call the summary method after compilation to print it out:

```python
model.summary()
```

**5. Learn the model and predict test dataset.**

```python
for epoch in range(1, epochs + 1):
    t1 = time()
    model.fit(
        x=train_data,
        epochs=1,
        validation_data=val_data,
        batch_size=batch_size
    )
    t2 = time()
    eval_dict = eval_pos_neg(model, test_data, ['hr', 'mrr', 'ndcg'], k, batch_size)
    print('Iteration %d Fit [%.1f s], Evaluate [%.1f s]: HR = %.4f, MRR = %.4f, NDCG = %.4f'
          % (epoch, t2 - t1, time() - t2, eval_dict['hr'], eval_dict['mrr'], eval_dict['ndcg']))
```

### Ranking

Waiting......



## Results

The experimental environment designed by Reclearn is different from that of some papers, so there may be some deviation in the results. Please refer to [Experiement](./docs/experiment.md) for details.

### Matching

<table style="text-align:center;margin:auto">
  <tr></tr>
  <tr>
    <th rowspan="2">Model</th>
    <th colspan="3">ml-1m</th>
    <th colspan="3">Beauty</th>
    <th colspan="3">STEAM</th>
  </tr>
  <tr>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
  </tr>
  <tr><td>BPR</td><td>0.5768</td><td>0.2392</td><td>0.3016</td><td>0.3708</td><td>0.2108</td><td>0.2485</td><td>0.7728</td><td>0.4220</td><td>0.5054</td></tr>
  <tr><td>NCF</td><td>0.5834</td><td>0.2219</td><td>0.3060</td><td>0.5448</td><td>0.2831</td><td>0.3451</td><td>0.7768</td><td>0.4273</td><td>0.5103</td></tr>
  <tr><td>DSSM</td><td>0.5498</td><td>0.2148</td><td>0.2929</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>YoutubeDNN</td><td>0.6737</td><td>0.3414</td><td>0.4201</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>GRU4Rec</td><td>0.7969</td><td>0.4698</td><td>0.5483</td><td>0.5211</td><td>0.2724</td><td>0.3312</td><td>0.8501</td><td>0.5486</td><td>0.6209</td></tr>
  <tr><td>Caser</td><td>0.7916</td><td>0.4450</td><td>0.5280</td><td>0.5487</td><td>0.2884</td><td>0.3501</td><td>0.8275</td><td>0.5064</td><td>0.5832</td></tr>
  <tr><td>SASRec</td><td>0.8103</td><td>0.4812</td><td>0.5605</td><td>0.5230</td><td>0.2781</td><td>0.3355</td><td>0.8606</td><td>0.5669</td><td>0.6374</td></tr>
  <tr><td>AttRec</td><td>0.7873</td><td>0.4578</td><td>0.5363</td><td>0.4995</td><td>0.2695</td><td>0.3229</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>FISSA</td><td>0.8106</td><td>0.4953</td><td>0.5713</td><td>0.5431</td><td>0.2851</td><td>0.3462</td><td>0.8635</td><td>0.5682</td><td>0.6391</td></tr>
</table>



### Ranking

<table style="text-align:center;margin:auto">
  <tr></tr>
  <tr>
    <th rowspan="2">Model</th>
    <th colspan="2">500w(Criteo)</th>
    <th colspan="2">Criteo</th>
  </tr>
  <tr>
    <th>Log Loss</th>
    <th>AUC</th>
    <th>Log Loss</th>
    <th>AUC</th>
  </tr>
  <tr><td>FM</td><td>0.4765</td><td>0.7783</td><td>0.4762</td><td>0.7875</td></tr>
  <tr><td>FFM</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>WDL</td><td>0.4684</td><td>0.7822</td><td>0.4692</td><td>0.7930</td></tr>
  <tr><td>Deep Crossing</td><td>0.4670</td><td>0.7826</td><td>0.4693</td><td>0.7935</td></tr>
  <tr><td>PNN</td><td>-</td><td>0.7847</td><td>-</td><td>-</td></tr>
  <tr><td>DCN</td><td>-</td><td>0.7823</td><td>0.4691</td><td>0.7929</td></tr>
  <tr><td>NFM</td><td>0.4773</td><td>0.7762</td><td>0.4723</td><td>0.7889</td></tr>
  <tr><td>AFM</td><td>0.4819</td><td>0.7808</td><td>0.4692</td><td>0.7871</td></tr>
  <tr><td>DeepFM</td><td>-</td><td>0.7828</td><td>0.4650</td><td>0.8007</td></tr>
  <tr><td>xDeepFM</td><td>0.4690</td><td>0.7839</td><td>0.4696</td><td>0.7919</td></tr>
</table>


## Model List

### 1. Matching Stage

|                         Paper\|Model                         |  Published   |     Author     |
| :----------------------------------------------------------: | :----------: | :------------: |
| BPR: Bayesian Personalized Ranking from Implicit Feedback\|**MF-BPR** |  UAI, 2009   | Steffen Rendle  |
|    Neural network-based Collaborative Filtering\|**NCF**     |  WWW, 2017   |  Xiangnan He   |
| Learning Deep Structured Semantic Models for Web Search using Clickthrough Data\|**DSSM** |  CIKM, 2013  |  Po-Sen Huang  |
| Deep Neural Networks for YouTube Recommendations\| **YoutubeDNN** | RecSys, 2016 | Paul Covington |
| Session-based Recommendations with Recurrent Neural Networks\|**GUR4Rec** |  ICLR, 2016  | Balázs Hidasi  |
|     Self-Attentive Sequential Recommendation\|**SASRec**     |  ICDM, 2018  |      UCSD      |
| Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding\|**Caser** |  WSDM, 2018  |   Jiaxi Tang   |
| Next Item Recommendation with Self-Attentive Metric Learning\|**AttRec** | AAAAI, 2019  |  Shuai Zhang   |
| FISSA: Fusing Item Similarity Models with Self-Attention Networks for Sequential Recommendation\|**FISSA** | RecSys, 2020 |    Jing Lin    |

### 2. Ranking Stage

|                         Paper|Model                         |  Published   |                            Author                            |
| :----------------------------------------------------------: | :----------: | :----------------------------------------------------------: |
|                Factorization Machines\|**FM**                |  ICDM, 2010  |                        Steffen Rendle                        |
| Field-aware Factorization Machines for CTR Prediction|**FFM** | RecSys, 2016 |                       Criteo Research                        |
|    Wide & Deep Learning for Recommender Systems|**WDL**     |  DLRS, 2016  |                         Google Inc.                          |
| Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features\|**Deep Crossing** |  KDD, 2016   |                      Microsoft Research                      |
| Product-based Neural Networks for User Response Prediction\|**PNN** |  ICDM, 2016  |                Shanghai Jiao Tong University                 |
|    Deep & Cross Network for Ad Click Predictions|**DCN**    | ADKDD, 2017  |               Stanford University|Google Inc.               |
| Neural Factorization Machines for Sparse Predictive Analytics\|**NFM** | SIGIR, 2017  |                         Xiangnan He                          |
| Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks\|**AFM** | IJCAI, 2017  |    Zhejiang University\|National University of Singapore     |
| DeepFM: A Factorization-Machine based Neural Network for CTR Prediction\|**DeepFM** | IJCAI, 2017  | Harbin Institute of Technology\|Noah’s Ark Research Lab, Huawei |
| xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems\|**xDeepFM** |  KDD, 2018   |        University of Science and Technology of China         |
| Deep Interest Network for Click-Through Rate Prediction\|**DIN** |  KDD, 2018   |                        Alibaba Group                         |

## Discussion

1. If you have any suggestions or questions about the project, you can leave a comment on `Issue`.
2. wechat:

<div align=center><img src="https://cdn.jsdelivr.net/gh/BlackSpaceGZY/cdn/img/weixin.jpg" width="20%"/></div>





%package help
Summary:	Development documents and examples for reclearn
Provides:	python3-reclearn-doc
%description help
<div>
  <img src='https://cdn.jsdelivr.net/gh/BlackSpaceGZY/cdn/img/logo.jpg' width='36%'/>
</div>

## RecLearn

<p align="left">
  <img src='https://img.shields.io/badge/python-3.8+-blue'>
  <img src='https://img.shields.io/badge/Tensorflow-2.5+-blue'>
  <img src='https://img.shields.io/badge/License-MIT-blue'>
  <img src='https://img.shields.io/badge/NumPy-1.17-brightgreen'>
  <img src='https://img.shields.io/badge/pandas-1.0.5-brightgreen'>
  <img src='https://img.shields.io/badge/sklearn-0.23.2-brightgreen'>
</p> 

[简体中文](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/blob/reclearn/README_CN.md) | [English](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/reclearn)

RecLearn (Recommender Learning)  which summarizes the contents of the [master](https://github.com/ZiyaoGeng/RecLearn/tree/master) branch in  `Recommender System with TF2.0 `  is a recommended learning framework based on Python and TensorFlow2.x for students and beginners. **Of course, if you are more comfortable with the master branch, you can clone the entire package, run some algorithms in example, and also update and modify the content of model and layer**. The implemented recommendation algorithms are classified according to two application stages in the industry:

- matching recommendation stage (Top-k Recmmendation)
- ranking  recommendeation stage (CTR predict model)



## Update

**04/23/2022**: update all matching model.



## Installation

### Package

RecLearn is on PyPI, so you can use pip to install it.

```
pip install reclearn
```

dependent environment:

- python3.8+
- Tensorflow2.5-GPU+/Tensorflow2.5-CPU+
- sklearn0.23+

### Local

Clone Reclearn to local:

```shell
git clone -b reclearn git@github.com:ZiyaoGeng/RecLearn.git
```



## Quick Start

In [example](https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/reclearn/example), we have given a demo of each of the recommended models.

### Matching

**1. Divide the dataset.**

Set the path of the raw dataset:

```python
file_path = 'data/ml-1m/ratings.dat'
```

Please divide the current dataset into training dataset, validation dataset and test dataset. If you use `movielens-1m`, `Amazon-Beauty`, `Amazon-Games` and `STEAM`, you can call method `data/datasets/*` of RecLearn directly:

```python
train_path, val_path, test_path, meta_path = ml.split_seq_data(file_path=file_path)
```

`meta_path` indicates the path of the metafile, which stores the maximum number of user and item indexes.

**2. Load the dataset.**

Complete the loading of training dataset, validation dataset and test dataset, and generate several negative samples (random sampling) for each positive sample. The format of data is dictionary:

```python
data = {'pos_item':, 'neg_item': , ['user': , 'click_seq': ,...]}
```

If you're building a sequential recommendation model, you need to introduce click sequences. Reclearn provides methods for loading the data for the above four datasets:

```python
# general recommendation model
train_data = ml.load_data(train_path, neg_num, max_item_num)
# sequence recommendation model, and use the user feature.
train_data = ml.load_seq_data(train_path, "train", seq_len, neg_num, max_item_num, contain_user=True)
```

**3. Set hyper-parameters.**

The model needs to specify the required hyperparameters. Now, we take `BPR` model as an example:

```python
model_params = {
        'user_num': max_user_num + 1,
        'item_num': max_item_num + 1,
        'embed_dim': FLAGS.embed_dim,
        'use_l2norm': FLAGS.use_l2norm,
        'embed_reg': FLAGS.embed_reg
    }
```

**4. Build and compile the model.**

Select or build the model you need and compile it. Take 'BPR' as an example:

```python
model = BPR(**model_params)
model.compile(optimizer=Adam(learning_rate=FLAGS.learning_rate))
```

If you have problems with the structure of the model, you can call the summary method after compilation to print it out:

```python
model.summary()
```

**5. Learn the model and predict test dataset.**

```python
for epoch in range(1, epochs + 1):
    t1 = time()
    model.fit(
        x=train_data,
        epochs=1,
        validation_data=val_data,
        batch_size=batch_size
    )
    t2 = time()
    eval_dict = eval_pos_neg(model, test_data, ['hr', 'mrr', 'ndcg'], k, batch_size)
    print('Iteration %d Fit [%.1f s], Evaluate [%.1f s]: HR = %.4f, MRR = %.4f, NDCG = %.4f'
          % (epoch, t2 - t1, time() - t2, eval_dict['hr'], eval_dict['mrr'], eval_dict['ndcg']))
```

### Ranking

Waiting......



## Results

The experimental environment designed by Reclearn is different from that of some papers, so there may be some deviation in the results. Please refer to [Experiement](./docs/experiment.md) for details.

### Matching

<table style="text-align:center;margin:auto">
  <tr></tr>
  <tr>
    <th rowspan="2">Model</th>
    <th colspan="3">ml-1m</th>
    <th colspan="3">Beauty</th>
    <th colspan="3">STEAM</th>
  </tr>
  <tr>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
    <th>HR@10</th><th>MRR@10</th><th>NDCG@10</th>
  </tr>
  <tr><td>BPR</td><td>0.5768</td><td>0.2392</td><td>0.3016</td><td>0.3708</td><td>0.2108</td><td>0.2485</td><td>0.7728</td><td>0.4220</td><td>0.5054</td></tr>
  <tr><td>NCF</td><td>0.5834</td><td>0.2219</td><td>0.3060</td><td>0.5448</td><td>0.2831</td><td>0.3451</td><td>0.7768</td><td>0.4273</td><td>0.5103</td></tr>
  <tr><td>DSSM</td><td>0.5498</td><td>0.2148</td><td>0.2929</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>YoutubeDNN</td><td>0.6737</td><td>0.3414</td><td>0.4201</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>GRU4Rec</td><td>0.7969</td><td>0.4698</td><td>0.5483</td><td>0.5211</td><td>0.2724</td><td>0.3312</td><td>0.8501</td><td>0.5486</td><td>0.6209</td></tr>
  <tr><td>Caser</td><td>0.7916</td><td>0.4450</td><td>0.5280</td><td>0.5487</td><td>0.2884</td><td>0.3501</td><td>0.8275</td><td>0.5064</td><td>0.5832</td></tr>
  <tr><td>SASRec</td><td>0.8103</td><td>0.4812</td><td>0.5605</td><td>0.5230</td><td>0.2781</td><td>0.3355</td><td>0.8606</td><td>0.5669</td><td>0.6374</td></tr>
  <tr><td>AttRec</td><td>0.7873</td><td>0.4578</td><td>0.5363</td><td>0.4995</td><td>0.2695</td><td>0.3229</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>FISSA</td><td>0.8106</td><td>0.4953</td><td>0.5713</td><td>0.5431</td><td>0.2851</td><td>0.3462</td><td>0.8635</td><td>0.5682</td><td>0.6391</td></tr>
</table>



### Ranking

<table style="text-align:center;margin:auto">
  <tr></tr>
  <tr>
    <th rowspan="2">Model</th>
    <th colspan="2">500w(Criteo)</th>
    <th colspan="2">Criteo</th>
  </tr>
  <tr>
    <th>Log Loss</th>
    <th>AUC</th>
    <th>Log Loss</th>
    <th>AUC</th>
  </tr>
  <tr><td>FM</td><td>0.4765</td><td>0.7783</td><td>0.4762</td><td>0.7875</td></tr>
  <tr><td>FFM</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
  <tr><td>WDL</td><td>0.4684</td><td>0.7822</td><td>0.4692</td><td>0.7930</td></tr>
  <tr><td>Deep Crossing</td><td>0.4670</td><td>0.7826</td><td>0.4693</td><td>0.7935</td></tr>
  <tr><td>PNN</td><td>-</td><td>0.7847</td><td>-</td><td>-</td></tr>
  <tr><td>DCN</td><td>-</td><td>0.7823</td><td>0.4691</td><td>0.7929</td></tr>
  <tr><td>NFM</td><td>0.4773</td><td>0.7762</td><td>0.4723</td><td>0.7889</td></tr>
  <tr><td>AFM</td><td>0.4819</td><td>0.7808</td><td>0.4692</td><td>0.7871</td></tr>
  <tr><td>DeepFM</td><td>-</td><td>0.7828</td><td>0.4650</td><td>0.8007</td></tr>
  <tr><td>xDeepFM</td><td>0.4690</td><td>0.7839</td><td>0.4696</td><td>0.7919</td></tr>
</table>


## Model List

### 1. Matching Stage

|                         Paper\|Model                         |  Published   |     Author     |
| :----------------------------------------------------------: | :----------: | :------------: |
| BPR: Bayesian Personalized Ranking from Implicit Feedback\|**MF-BPR** |  UAI, 2009   | Steffen Rendle  |
|    Neural network-based Collaborative Filtering\|**NCF**     |  WWW, 2017   |  Xiangnan He   |
| Learning Deep Structured Semantic Models for Web Search using Clickthrough Data\|**DSSM** |  CIKM, 2013  |  Po-Sen Huang  |
| Deep Neural Networks for YouTube Recommendations\| **YoutubeDNN** | RecSys, 2016 | Paul Covington |
| Session-based Recommendations with Recurrent Neural Networks\|**GUR4Rec** |  ICLR, 2016  | Balázs Hidasi  |
|     Self-Attentive Sequential Recommendation\|**SASRec**     |  ICDM, 2018  |      UCSD      |
| Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding\|**Caser** |  WSDM, 2018  |   Jiaxi Tang   |
| Next Item Recommendation with Self-Attentive Metric Learning\|**AttRec** | AAAAI, 2019  |  Shuai Zhang   |
| FISSA: Fusing Item Similarity Models with Self-Attention Networks for Sequential Recommendation\|**FISSA** | RecSys, 2020 |    Jing Lin    |

### 2. Ranking Stage

|                         Paper|Model                         |  Published   |                            Author                            |
| :----------------------------------------------------------: | :----------: | :----------------------------------------------------------: |
|                Factorization Machines\|**FM**                |  ICDM, 2010  |                        Steffen Rendle                        |
| Field-aware Factorization Machines for CTR Prediction|**FFM** | RecSys, 2016 |                       Criteo Research                        |
|    Wide & Deep Learning for Recommender Systems|**WDL**     |  DLRS, 2016  |                         Google Inc.                          |
| Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features\|**Deep Crossing** |  KDD, 2016   |                      Microsoft Research                      |
| Product-based Neural Networks for User Response Prediction\|**PNN** |  ICDM, 2016  |                Shanghai Jiao Tong University                 |
|    Deep & Cross Network for Ad Click Predictions|**DCN**    | ADKDD, 2017  |               Stanford University|Google Inc.               |
| Neural Factorization Machines for Sparse Predictive Analytics\|**NFM** | SIGIR, 2017  |                         Xiangnan He                          |
| Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks\|**AFM** | IJCAI, 2017  |    Zhejiang University\|National University of Singapore     |
| DeepFM: A Factorization-Machine based Neural Network for CTR Prediction\|**DeepFM** | IJCAI, 2017  | Harbin Institute of Technology\|Noah’s Ark Research Lab, Huawei |
| xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems\|**xDeepFM** |  KDD, 2018   |        University of Science and Technology of China         |
| Deep Interest Network for Click-Through Rate Prediction\|**DIN** |  KDD, 2018   |                        Alibaba Group                         |

## Discussion

1. If you have any suggestions or questions about the project, you can leave a comment on `Issue`.
2. wechat:

<div align=center><img src="https://cdn.jsdelivr.net/gh/BlackSpaceGZY/cdn/img/weixin.jpg" width="20%"/></div>





%prep
%autosetup -n reclearn-1.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-reclearn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated