1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
|
%global _empty_manifest_terminate_build 0
Name: python-region-estimators
Version: 1.2.0
Release: 1
Summary: Make estimations for geographic regions, based on actual data (e.g. from sensors)
License: MIT License
URL: https://github.com/UoMResearchIT/region-estimators
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0e/b0/55dd9acec3b095f51fc4013dbe032979b270e86763ccfe9439c3b1d1e7c9/region_estimators-1.2.0.tar.gz
BuildArch: noarch
%description
# region-estimators package
[](https://github.com/UoMResearchIT/region-estimators/actions/workflows/python-package.yml)
region-estimators is a Python library to calculate regional estimations of scalar quantities, based on some known scalar quantities at specific locations.
For example, estimating the NO2 (pollution) level of a postcode/zip region, based on site data nearby.
This first version of the package is initialised with 2 estimation methods:
1. ConcentricRegions: look for actual data points in gradually wider rings, starting with sites within the region, and then working in rings outwards, until sites are found. If more than one site is found at the final stage, it takes the mean.
2. Simple Distance measure: This is a very basic implementation... Find the nearest site to the region and use that value.
If sites exist within the region, take the mean.
The sections below are:
- [Repository Structure](#repository-structure)
- [Requirements](#requirements)
- [Usage](#usage)
- [Unit Testing](#unit-testing)
- [Contributing](#contributing)
- [Copyright and licensing](#copyright--licensing)
<!-- toc -->
## Repository Structure
The `region_estimators` directory contains the python modules used by the tools.
The `sample_input_files` directory contains examples of the input files required to test installation.
Operational scripts are stored within the `scripts` directory.
A set of python unittest test files can be found in the `test` directory.
```
.
├── region_estimators
├── sample_input_files
├── scripts
│ └── outputs
├── test
```
## Requirements
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install region-estimators.
```bash
pip install shapely
pip install pandas
pip install geopandas
pip install region-estimators
```
## Usage
An example python script that uses the region-estimators package can be found in the `scripts` directory.
The required parts are highlighted in the following shortened excerpt:
```python
from shapely import wkt
import pandas as pd
from region_estimators import RegionEstimatorFactory, EstimationData
if __name__ == '__main__':
# obtain inputs arguments
#... [See scripts for obtaining via commandline arguments (argparse)]
# Prepare input files (For sample input files, see the 'sample_input_files' folder)
df_regions = pd.read_csv(regions_filespec, index_col='region_id')
df_sites = pd.read_csv(sites_filespec, index_col='site_id')
df_actuals = pd.read_csv(actuals_filespec)
# Convert the regions geometry column from string to wkt format using wkt
df_regions['geometry'] = df_regions.apply(lambda row: wkt.loads(row.geometry), axis=1)
# Create estimator, the first parameter is the estimation method.
estimation_data = EstimationData(df_sites, df_regions, df_actuals)
estimator = RegionEstimatorFactory.region_estimator(method, estimation_data, verbose, max_processors)
# Make estimations
if method == 'concentric-regions':
estimator.max_ring_count = max_rings
df_estimates = estimator.get_estimations(measurement, region_id, timestamp)
print(df_estimates)
# Convert dataframe result to (for example) a csv file:
if args.save_to_csv:
df_estimates.to_csv(os.path.join(outdir_name, 'estimates_{}.csv'.format(outfile_suffix)))
```
##### Details of estimation_data class creation / parameters:
```
├── Constructor
│ ├── 3 pandas.Dataframe objects:
│ │ └── regions (metadata)
│ │ │ └── required columns
│ │ │ │ └── 'region_id' (INDEX): identifier for region (must be unique to each region)
│ │ │ │ └── 'geometry' (shapely.wkt/geom.wkt): Multi-polygon representing regions location and shape.
│ │ └── sites (metadata)
│ │ │ └── required columns
│ │ │ │ └── 'site_id' (INDEX): identifier for site (must be unique to each site)
│ │ │ │ └── 'latitude' (numeric): latitude of site location
│ │ │ │ └── 'longitude' (numeric): longitude of site location
│ │ │ └── optional columns
│ │ │ │ └── 'name' (string): Human readable name of site
│ │ └── actuals (data)
│ │ │ └── required columns
│ │ │ │ └── 'timestamp' (string): timestamp of actual reading
│ │ │ │ └── 'site_id': (string) ID of site which took actua in sites (in value and type))
│ │ │ │ └── [one or more value columns] (float): value of actual measurement readings.
├── Returns
│ ├── Initialised instance of EstimationData class
```
##### Details of region_estimators factory class parameters: #####
```
├── Required inputs
│ ├── method_name (string): The estimation method to be uesed
In the first version the options are 'concentric-regions' or 'distance-simple'
│ ├── estimation_data (EstimationData instance - see above): data required to make estimations
├── Optional inputs
│ ├── verbose: (int) Verbosity of output level. zero or less => No debug output. Default=0
│ ├── max_processors (int) Maximum number of processors to use. Default=1
│ (Maximum: Number of processor available)
├── Returns
│ ├── Initialised instance of subclass of RegionEstimator class
```
##### Details of RegionEstimator (subclass) get_estimations method parameters
```
├── Required inputs
│ ├── measurement: which measurement to be estimated (e.g. 'urtica')
├── Optional inputs
│ ├── region_id: region identifier (string (or None to get all regions))
│ ├── timestamp: timestamp identifier (string (or None to get all timestamps))
│ ├── ignore_site_ids: (list of str) Site IDs to be ignored. Default=[]
├── Returns
│ ├── pandas dataframe, with columns:
│ │ └── measurement
│ │ └── region_id
│ │ └── timestamp
│ │ └── value: (float or empty) The estimated value
│ │ └── extra_data: (dict string) Extra info about the estimation calculation
WARNING! - estimator.get_estimates('urtica', None, None) will calculate every region at every timestamp.
```
## Unit testing
A set of python unittest test files can be found in the `test` directory, and can be run from the shell
(once the necessary requirements are installed) with the command:
```bash
python -m unittest
```
## Contributing
### Improvements to code
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
### Extending the RegionEstimator class
with further method classes:
* Add the new class name (str) to the available_methods list in region_estimator_factory.py:
```python
available_methods = {'concentric-regions': ConcentricRegionsEstimator,
'distance-simple': DistanceSimpleEstimator}
```
* Create the new RegionEstimator subclass, following the layout in other current subclasses.
E.g. ConcentricRegionsEstimator (concentric_regions_estimator.py) and
DistanceSimpleEstimator (distance_simple_estimator.py)
## Copyright & Licensing
This software has been developed by the [Research IT](https://research-it.manchester.ac.uk/) group at the [University of Manchester](https://www.manchester.ac.uk/) for an [Alan Turing Institute](https://www.turing.ac.uk/) project.
(c) 2019-2021 University of Manchester.
Licensed under the MIT license (https://opensource.org/licenses/MIT)
%package -n python3-region-estimators
Summary: Make estimations for geographic regions, based on actual data (e.g. from sensors)
Provides: python-region-estimators
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-region-estimators
# region-estimators package
[](https://github.com/UoMResearchIT/region-estimators/actions/workflows/python-package.yml)
region-estimators is a Python library to calculate regional estimations of scalar quantities, based on some known scalar quantities at specific locations.
For example, estimating the NO2 (pollution) level of a postcode/zip region, based on site data nearby.
This first version of the package is initialised with 2 estimation methods:
1. ConcentricRegions: look for actual data points in gradually wider rings, starting with sites within the region, and then working in rings outwards, until sites are found. If more than one site is found at the final stage, it takes the mean.
2. Simple Distance measure: This is a very basic implementation... Find the nearest site to the region and use that value.
If sites exist within the region, take the mean.
The sections below are:
- [Repository Structure](#repository-structure)
- [Requirements](#requirements)
- [Usage](#usage)
- [Unit Testing](#unit-testing)
- [Contributing](#contributing)
- [Copyright and licensing](#copyright--licensing)
<!-- toc -->
## Repository Structure
The `region_estimators` directory contains the python modules used by the tools.
The `sample_input_files` directory contains examples of the input files required to test installation.
Operational scripts are stored within the `scripts` directory.
A set of python unittest test files can be found in the `test` directory.
```
.
├── region_estimators
├── sample_input_files
├── scripts
│ └── outputs
├── test
```
## Requirements
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install region-estimators.
```bash
pip install shapely
pip install pandas
pip install geopandas
pip install region-estimators
```
## Usage
An example python script that uses the region-estimators package can be found in the `scripts` directory.
The required parts are highlighted in the following shortened excerpt:
```python
from shapely import wkt
import pandas as pd
from region_estimators import RegionEstimatorFactory, EstimationData
if __name__ == '__main__':
# obtain inputs arguments
#... [See scripts for obtaining via commandline arguments (argparse)]
# Prepare input files (For sample input files, see the 'sample_input_files' folder)
df_regions = pd.read_csv(regions_filespec, index_col='region_id')
df_sites = pd.read_csv(sites_filespec, index_col='site_id')
df_actuals = pd.read_csv(actuals_filespec)
# Convert the regions geometry column from string to wkt format using wkt
df_regions['geometry'] = df_regions.apply(lambda row: wkt.loads(row.geometry), axis=1)
# Create estimator, the first parameter is the estimation method.
estimation_data = EstimationData(df_sites, df_regions, df_actuals)
estimator = RegionEstimatorFactory.region_estimator(method, estimation_data, verbose, max_processors)
# Make estimations
if method == 'concentric-regions':
estimator.max_ring_count = max_rings
df_estimates = estimator.get_estimations(measurement, region_id, timestamp)
print(df_estimates)
# Convert dataframe result to (for example) a csv file:
if args.save_to_csv:
df_estimates.to_csv(os.path.join(outdir_name, 'estimates_{}.csv'.format(outfile_suffix)))
```
##### Details of estimation_data class creation / parameters:
```
├── Constructor
│ ├── 3 pandas.Dataframe objects:
│ │ └── regions (metadata)
│ │ │ └── required columns
│ │ │ │ └── 'region_id' (INDEX): identifier for region (must be unique to each region)
│ │ │ │ └── 'geometry' (shapely.wkt/geom.wkt): Multi-polygon representing regions location and shape.
│ │ └── sites (metadata)
│ │ │ └── required columns
│ │ │ │ └── 'site_id' (INDEX): identifier for site (must be unique to each site)
│ │ │ │ └── 'latitude' (numeric): latitude of site location
│ │ │ │ └── 'longitude' (numeric): longitude of site location
│ │ │ └── optional columns
│ │ │ │ └── 'name' (string): Human readable name of site
│ │ └── actuals (data)
│ │ │ └── required columns
│ │ │ │ └── 'timestamp' (string): timestamp of actual reading
│ │ │ │ └── 'site_id': (string) ID of site which took actua in sites (in value and type))
│ │ │ │ └── [one or more value columns] (float): value of actual measurement readings.
├── Returns
│ ├── Initialised instance of EstimationData class
```
##### Details of region_estimators factory class parameters: #####
```
├── Required inputs
│ ├── method_name (string): The estimation method to be uesed
In the first version the options are 'concentric-regions' or 'distance-simple'
│ ├── estimation_data (EstimationData instance - see above): data required to make estimations
├── Optional inputs
│ ├── verbose: (int) Verbosity of output level. zero or less => No debug output. Default=0
│ ├── max_processors (int) Maximum number of processors to use. Default=1
│ (Maximum: Number of processor available)
├── Returns
│ ├── Initialised instance of subclass of RegionEstimator class
```
##### Details of RegionEstimator (subclass) get_estimations method parameters
```
├── Required inputs
│ ├── measurement: which measurement to be estimated (e.g. 'urtica')
├── Optional inputs
│ ├── region_id: region identifier (string (or None to get all regions))
│ ├── timestamp: timestamp identifier (string (or None to get all timestamps))
│ ├── ignore_site_ids: (list of str) Site IDs to be ignored. Default=[]
├── Returns
│ ├── pandas dataframe, with columns:
│ │ └── measurement
│ │ └── region_id
│ │ └── timestamp
│ │ └── value: (float or empty) The estimated value
│ │ └── extra_data: (dict string) Extra info about the estimation calculation
WARNING! - estimator.get_estimates('urtica', None, None) will calculate every region at every timestamp.
```
## Unit testing
A set of python unittest test files can be found in the `test` directory, and can be run from the shell
(once the necessary requirements are installed) with the command:
```bash
python -m unittest
```
## Contributing
### Improvements to code
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
### Extending the RegionEstimator class
with further method classes:
* Add the new class name (str) to the available_methods list in region_estimator_factory.py:
```python
available_methods = {'concentric-regions': ConcentricRegionsEstimator,
'distance-simple': DistanceSimpleEstimator}
```
* Create the new RegionEstimator subclass, following the layout in other current subclasses.
E.g. ConcentricRegionsEstimator (concentric_regions_estimator.py) and
DistanceSimpleEstimator (distance_simple_estimator.py)
## Copyright & Licensing
This software has been developed by the [Research IT](https://research-it.manchester.ac.uk/) group at the [University of Manchester](https://www.manchester.ac.uk/) for an [Alan Turing Institute](https://www.turing.ac.uk/) project.
(c) 2019-2021 University of Manchester.
Licensed under the MIT license (https://opensource.org/licenses/MIT)
%package help
Summary: Development documents and examples for region-estimators
Provides: python3-region-estimators-doc
%description help
# region-estimators package
[](https://github.com/UoMResearchIT/region-estimators/actions/workflows/python-package.yml)
region-estimators is a Python library to calculate regional estimations of scalar quantities, based on some known scalar quantities at specific locations.
For example, estimating the NO2 (pollution) level of a postcode/zip region, based on site data nearby.
This first version of the package is initialised with 2 estimation methods:
1. ConcentricRegions: look for actual data points in gradually wider rings, starting with sites within the region, and then working in rings outwards, until sites are found. If more than one site is found at the final stage, it takes the mean.
2. Simple Distance measure: This is a very basic implementation... Find the nearest site to the region and use that value.
If sites exist within the region, take the mean.
The sections below are:
- [Repository Structure](#repository-structure)
- [Requirements](#requirements)
- [Usage](#usage)
- [Unit Testing](#unit-testing)
- [Contributing](#contributing)
- [Copyright and licensing](#copyright--licensing)
<!-- toc -->
## Repository Structure
The `region_estimators` directory contains the python modules used by the tools.
The `sample_input_files` directory contains examples of the input files required to test installation.
Operational scripts are stored within the `scripts` directory.
A set of python unittest test files can be found in the `test` directory.
```
.
├── region_estimators
├── sample_input_files
├── scripts
│ └── outputs
├── test
```
## Requirements
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install region-estimators.
```bash
pip install shapely
pip install pandas
pip install geopandas
pip install region-estimators
```
## Usage
An example python script that uses the region-estimators package can be found in the `scripts` directory.
The required parts are highlighted in the following shortened excerpt:
```python
from shapely import wkt
import pandas as pd
from region_estimators import RegionEstimatorFactory, EstimationData
if __name__ == '__main__':
# obtain inputs arguments
#... [See scripts for obtaining via commandline arguments (argparse)]
# Prepare input files (For sample input files, see the 'sample_input_files' folder)
df_regions = pd.read_csv(regions_filespec, index_col='region_id')
df_sites = pd.read_csv(sites_filespec, index_col='site_id')
df_actuals = pd.read_csv(actuals_filespec)
# Convert the regions geometry column from string to wkt format using wkt
df_regions['geometry'] = df_regions.apply(lambda row: wkt.loads(row.geometry), axis=1)
# Create estimator, the first parameter is the estimation method.
estimation_data = EstimationData(df_sites, df_regions, df_actuals)
estimator = RegionEstimatorFactory.region_estimator(method, estimation_data, verbose, max_processors)
# Make estimations
if method == 'concentric-regions':
estimator.max_ring_count = max_rings
df_estimates = estimator.get_estimations(measurement, region_id, timestamp)
print(df_estimates)
# Convert dataframe result to (for example) a csv file:
if args.save_to_csv:
df_estimates.to_csv(os.path.join(outdir_name, 'estimates_{}.csv'.format(outfile_suffix)))
```
##### Details of estimation_data class creation / parameters:
```
├── Constructor
│ ├── 3 pandas.Dataframe objects:
│ │ └── regions (metadata)
│ │ │ └── required columns
│ │ │ │ └── 'region_id' (INDEX): identifier for region (must be unique to each region)
│ │ │ │ └── 'geometry' (shapely.wkt/geom.wkt): Multi-polygon representing regions location and shape.
│ │ └── sites (metadata)
│ │ │ └── required columns
│ │ │ │ └── 'site_id' (INDEX): identifier for site (must be unique to each site)
│ │ │ │ └── 'latitude' (numeric): latitude of site location
│ │ │ │ └── 'longitude' (numeric): longitude of site location
│ │ │ └── optional columns
│ │ │ │ └── 'name' (string): Human readable name of site
│ │ └── actuals (data)
│ │ │ └── required columns
│ │ │ │ └── 'timestamp' (string): timestamp of actual reading
│ │ │ │ └── 'site_id': (string) ID of site which took actua in sites (in value and type))
│ │ │ │ └── [one or more value columns] (float): value of actual measurement readings.
├── Returns
│ ├── Initialised instance of EstimationData class
```
##### Details of region_estimators factory class parameters: #####
```
├── Required inputs
│ ├── method_name (string): The estimation method to be uesed
In the first version the options are 'concentric-regions' or 'distance-simple'
│ ├── estimation_data (EstimationData instance - see above): data required to make estimations
├── Optional inputs
│ ├── verbose: (int) Verbosity of output level. zero or less => No debug output. Default=0
│ ├── max_processors (int) Maximum number of processors to use. Default=1
│ (Maximum: Number of processor available)
├── Returns
│ ├── Initialised instance of subclass of RegionEstimator class
```
##### Details of RegionEstimator (subclass) get_estimations method parameters
```
├── Required inputs
│ ├── measurement: which measurement to be estimated (e.g. 'urtica')
├── Optional inputs
│ ├── region_id: region identifier (string (or None to get all regions))
│ ├── timestamp: timestamp identifier (string (or None to get all timestamps))
│ ├── ignore_site_ids: (list of str) Site IDs to be ignored. Default=[]
├── Returns
│ ├── pandas dataframe, with columns:
│ │ └── measurement
│ │ └── region_id
│ │ └── timestamp
│ │ └── value: (float or empty) The estimated value
│ │ └── extra_data: (dict string) Extra info about the estimation calculation
WARNING! - estimator.get_estimates('urtica', None, None) will calculate every region at every timestamp.
```
## Unit testing
A set of python unittest test files can be found in the `test` directory, and can be run from the shell
(once the necessary requirements are installed) with the command:
```bash
python -m unittest
```
## Contributing
### Improvements to code
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
### Extending the RegionEstimator class
with further method classes:
* Add the new class name (str) to the available_methods list in region_estimator_factory.py:
```python
available_methods = {'concentric-regions': ConcentricRegionsEstimator,
'distance-simple': DistanceSimpleEstimator}
```
* Create the new RegionEstimator subclass, following the layout in other current subclasses.
E.g. ConcentricRegionsEstimator (concentric_regions_estimator.py) and
DistanceSimpleEstimator (distance_simple_estimator.py)
## Copyright & Licensing
This software has been developed by the [Research IT](https://research-it.manchester.ac.uk/) group at the [University of Manchester](https://www.manchester.ac.uk/) for an [Alan Turing Institute](https://www.turing.ac.uk/) project.
(c) 2019-2021 University of Manchester.
Licensed under the MIT license (https://opensource.org/licenses/MIT)
%prep
%autosetup -n region-estimators-1.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-region-estimators -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.0-1
- Package Spec generated
|