1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
|
%global _empty_manifest_terminate_build 0
Name: python-RelevanceAI
Version: 3.2.22
Release: 1
Summary: please add a summary manually as the author left a blank one
License: Apache Software License
URL: https://tryrelevance.com/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cb/b9/e2c302e1b7af5b72efff6d37e4a7fcb0d0eb2233938ebe9fb2da7241e2a4/RelevanceAI-3.2.22.tar.gz
BuildArch: noarch
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-autopep8
Requires: python3-pylint
Requires: python3-jupyter
Requires: python3-pre-commit
Requires: python3-black
Requires: python3-mypy
Requires: python3-xenon
Requires: python3-pytest
Requires: python3-pytest-dotenv
Requires: python3-pytest-xdist
Requires: python3-pytest-cov
Requires: python3-pytest-mock
Requires: python3-types-requests
Requires: python3-pytest-sugar
Requires: python3-pytest-rerunfailures
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-openpyxl
Requires: python3-fsspec
Requires: python3-umap-learn
Requires: python3-sphinx-rtd-theme
Requires: python3-pydata-sphinx-theme
Requires: python3-sphinx-autoapi
Requires: python3-sphinx-autodoc-typehints
Requires: python3-autopep8
Requires: python3-pylint
Requires: python3-jupyter
Requires: python3-pytest
Requires: python3-pytest-dotenv
Requires: python3-pytest-xdist
Requires: python3-pytest-cov
Requires: python3-pytest-mock
Requires: python3-mypy
Requires: python3-types-requests
Requires: python3-pytest-sugar
Requires: python3-pytest-rerunfailures
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-openpyxl
Requires: python3-fsspec
Requires: python3-umap-learn
Requires: python3-sphinx-rtd-theme
Requires: python3-pydata-sphinx-theme
Requires: python3-sphinx-autoapi
Requires: python3-sphinx-autodoc-typehints
Requires: python3-autopep8
Requires: python3-pylint
Requires: python3-jupyter
Requires: python3-pytest
Requires: python3-pytest-dotenv
Requires: python3-pytest-xdist
Requires: python3-pytest-cov
Requires: python3-pytest-mock
Requires: python3-mypy
Requires: python3-types-requests
Requires: python3-pytest-sugar
Requires: python3-pytest-rerunfailures
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-openpyxl
Requires: python3-fsspec
Requires: python3-umap-learn
Requires: python3-sphinx-rtd-theme
Requires: python3-pydata-sphinx-theme
Requires: python3-sphinx-autoapi
Requires: python3-sphinx-autodoc-typehints
Requires: python3-sphinx-rtd-theme
Requires: python3-pydata-sphinx-theme
Requires: python3-sphinx-autoapi
Requires: python3-sphinx-autodoc-typehints
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-openpyxl
Requires: python3-fsspec
Requires: python3-hdbscan
Requires: python3-scikit-learn-extra
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-sentence-transformers
Requires: python3-jsonshower
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-pytest
Requires: python3-pytest-dotenv
Requires: python3-pytest-xdist
Requires: python3-pytest-cov
Requires: python3-pytest-mock
Requires: python3-mypy
Requires: python3-types-requests
Requires: python3-pytest-sugar
Requires: python3-pytest-rerunfailures
Requires: python3-tqdm
Requires: python3-pandas
Requires: python3-loguru
Requires: python3-document-utils
Requires: python3-requests
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-scikit-learn
Requires: python3-typing-extensions
Requires: python3-analytics-python
Requires: python3-aiohttp
Requires: python3-appdirs
Requires: python3-orjson
Requires: python3-psutil
Requires: python3-openpyxl
Requires: python3-fsspec
Requires: python3-umap-learn
Requires: python3-umap-learn
%description

## Relevance AI - The ML Platform for Unstructured Data Analysis
[](https://relevanceai.readthedocs.io/en/latest/?badge=latest)
[](https://img.shields.io/pypi/l/relevanceai)
🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more.
🔥 Use Relevance to unlock the value of your unstructured data:
- ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code.
- ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images.
- 📊 Create charts for both structured and unstructured.
- 🔎 Drilldown with filters and similarity search to explore and find insights.
- 🚀 Share data apps with your team.
[Sign up for a free account ->](https://hubs.ly/Q017CkXK0)
Relevance AI also acts as a platform for:
- 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters.
- 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases.
## 🧠 Documentation
| Type | Link |
| ------------- | ----------- |
| Python API | [Documentation](https://sdk.tryrelevance.com/) |
| Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) |
| Cloud Dashboard | [Documentation](https://docs.tryrelevance.com/) |
## 🛠️ Installation
Using pip:
```{bash}
pip install -U relevanceai
```
Using conda:
```{bash}
conda install -c relevance relevanceai
```
## ⏩ Quickstart
[](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb)
Login to `relevanceai`:
```{python}
from relevanceai import Client
client = Client()
```
Prepare your documents for insertion by following the below format:
- Each document should be a dictionary
- Include a field `_id` as a primary key, otherwise it's automatically generated
- Suffix vector fields with `_vector_`
```{python}
docs = [
{"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
{"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
{"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
{"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
{"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]
```
### Insert data into a dataset
Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.
```{python}
ds = client.Dataset("quickstart")
ds.insert_documents(docs)
```
> Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`.
### Perform vector search
```{python}
query = [
{"vector": [0.2, 0.2, 0.2], "field": "example_vector_"}
]
results = ds.search(
vector_search_query=query,
page_size=3,
)
```
[Learn more about how to flexibly configure your vector search ->](https://sdk.tryrelevance.com/docs/search)
### Perform clustering
Generate clusters
```{python}
clusterop = ds.cluster(vector_fields=["example_vector_"])
clusterop.list_closest()
```
Generate clusters with sklearn
```{python}
from sklearn.cluster import AgglomerativeClustering
cluster_model = AgglomerativeClustering()
clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative")
clusterop.list_closest()
```
[Learn more about how to flexibly configure your clustering ->](https://sdk.tryrelevance.com/docs/search)
## 🧰 Config
The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini).
To view setting options, run the following:
```{python}
client.config.options
```
The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:
```{python}
client.config.set_option('logging.enable_logging', False)
```
To restore all options to their default, run the following:
### Changing the base URL
You can change the base URL as such:
```{python}
client.base_url = "https://.../latest"
```
## 🚧 Development
### Getting Started
To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.
```{bash}
python -m pip install pytest mypy
```
Then run testing using:
> Don't forget to set your test credentials!
```{bash}
export TEST_PROJECT = xxx
export TEST_API_KEY = xxx
python -m pytest
mypy relevanceai
```
Set up precommit
```{bash}
pip install precommit
pre-commit install
```
%package -n python3-RelevanceAI
Summary: please add a summary manually as the author left a blank one
Provides: python-RelevanceAI
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-RelevanceAI

## Relevance AI - The ML Platform for Unstructured Data Analysis
[](https://relevanceai.readthedocs.io/en/latest/?badge=latest)
[](https://img.shields.io/pypi/l/relevanceai)
🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more.
🔥 Use Relevance to unlock the value of your unstructured data:
- ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code.
- ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images.
- 📊 Create charts for both structured and unstructured.
- 🔎 Drilldown with filters and similarity search to explore and find insights.
- 🚀 Share data apps with your team.
[Sign up for a free account ->](https://hubs.ly/Q017CkXK0)
Relevance AI also acts as a platform for:
- 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters.
- 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases.
## 🧠 Documentation
| Type | Link |
| ------------- | ----------- |
| Python API | [Documentation](https://sdk.tryrelevance.com/) |
| Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) |
| Cloud Dashboard | [Documentation](https://docs.tryrelevance.com/) |
## 🛠️ Installation
Using pip:
```{bash}
pip install -U relevanceai
```
Using conda:
```{bash}
conda install -c relevance relevanceai
```
## ⏩ Quickstart
[](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb)
Login to `relevanceai`:
```{python}
from relevanceai import Client
client = Client()
```
Prepare your documents for insertion by following the below format:
- Each document should be a dictionary
- Include a field `_id` as a primary key, otherwise it's automatically generated
- Suffix vector fields with `_vector_`
```{python}
docs = [
{"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
{"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
{"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
{"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
{"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]
```
### Insert data into a dataset
Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.
```{python}
ds = client.Dataset("quickstart")
ds.insert_documents(docs)
```
> Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`.
### Perform vector search
```{python}
query = [
{"vector": [0.2, 0.2, 0.2], "field": "example_vector_"}
]
results = ds.search(
vector_search_query=query,
page_size=3,
)
```
[Learn more about how to flexibly configure your vector search ->](https://sdk.tryrelevance.com/docs/search)
### Perform clustering
Generate clusters
```{python}
clusterop = ds.cluster(vector_fields=["example_vector_"])
clusterop.list_closest()
```
Generate clusters with sklearn
```{python}
from sklearn.cluster import AgglomerativeClustering
cluster_model = AgglomerativeClustering()
clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative")
clusterop.list_closest()
```
[Learn more about how to flexibly configure your clustering ->](https://sdk.tryrelevance.com/docs/search)
## 🧰 Config
The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini).
To view setting options, run the following:
```{python}
client.config.options
```
The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:
```{python}
client.config.set_option('logging.enable_logging', False)
```
To restore all options to their default, run the following:
### Changing the base URL
You can change the base URL as such:
```{python}
client.base_url = "https://.../latest"
```
## 🚧 Development
### Getting Started
To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.
```{bash}
python -m pip install pytest mypy
```
Then run testing using:
> Don't forget to set your test credentials!
```{bash}
export TEST_PROJECT = xxx
export TEST_API_KEY = xxx
python -m pytest
mypy relevanceai
```
Set up precommit
```{bash}
pip install precommit
pre-commit install
```
%package help
Summary: Development documents and examples for RelevanceAI
Provides: python3-RelevanceAI-doc
%description help

## Relevance AI - The ML Platform for Unstructured Data Analysis
[](https://relevanceai.readthedocs.io/en/latest/?badge=latest)
[](https://img.shields.io/pypi/l/relevanceai)
🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more.
🔥 Use Relevance to unlock the value of your unstructured data:
- ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code.
- ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images.
- 📊 Create charts for both structured and unstructured.
- 🔎 Drilldown with filters and similarity search to explore and find insights.
- 🚀 Share data apps with your team.
[Sign up for a free account ->](https://hubs.ly/Q017CkXK0)
Relevance AI also acts as a platform for:
- 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters.
- 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases.
## 🧠 Documentation
| Type | Link |
| ------------- | ----------- |
| Python API | [Documentation](https://sdk.tryrelevance.com/) |
| Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) |
| Cloud Dashboard | [Documentation](https://docs.tryrelevance.com/) |
## 🛠️ Installation
Using pip:
```{bash}
pip install -U relevanceai
```
Using conda:
```{bash}
conda install -c relevance relevanceai
```
## ⏩ Quickstart
[](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb)
Login to `relevanceai`:
```{python}
from relevanceai import Client
client = Client()
```
Prepare your documents for insertion by following the below format:
- Each document should be a dictionary
- Include a field `_id` as a primary key, otherwise it's automatically generated
- Suffix vector fields with `_vector_`
```{python}
docs = [
{"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
{"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
{"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
{"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
{"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]
```
### Insert data into a dataset
Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.
```{python}
ds = client.Dataset("quickstart")
ds.insert_documents(docs)
```
> Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`.
### Perform vector search
```{python}
query = [
{"vector": [0.2, 0.2, 0.2], "field": "example_vector_"}
]
results = ds.search(
vector_search_query=query,
page_size=3,
)
```
[Learn more about how to flexibly configure your vector search ->](https://sdk.tryrelevance.com/docs/search)
### Perform clustering
Generate clusters
```{python}
clusterop = ds.cluster(vector_fields=["example_vector_"])
clusterop.list_closest()
```
Generate clusters with sklearn
```{python}
from sklearn.cluster import AgglomerativeClustering
cluster_model = AgglomerativeClustering()
clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative")
clusterop.list_closest()
```
[Learn more about how to flexibly configure your clustering ->](https://sdk.tryrelevance.com/docs/search)
## 🧰 Config
The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini).
To view setting options, run the following:
```{python}
client.config.options
```
The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:
```{python}
client.config.set_option('logging.enable_logging', False)
```
To restore all options to their default, run the following:
### Changing the base URL
You can change the base URL as such:
```{python}
client.base_url = "https://.../latest"
```
## 🚧 Development
### Getting Started
To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.
```{bash}
python -m pip install pytest mypy
```
Then run testing using:
> Don't forget to set your test credentials!
```{bash}
export TEST_PROJECT = xxx
export TEST_API_KEY = xxx
python -m pytest
mypy relevanceai
```
Set up precommit
```{bash}
pip install precommit
pre-commit install
```
%prep
%autosetup -n RelevanceAI-3.2.22
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-RelevanceAI -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 3.2.22-1
- Package Spec generated
|