1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
|
%global _empty_manifest_terminate_build 0
Name: python-riptide
Version: 3.4.79
Release: 1
Summary: Reaction Inclusion by Parsimony and Transcript Distribution (RIPTiDe)
License: MIT License
URL: https://github.com/mjenior/riptide
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cf/90/94bade958d79cc98d648c07714c790ae5e0c0be2c6245cf3de9ea86ac951/riptide-3.4.79.tar.gz
BuildArch: noarch
%description
# RIPTiDe
**R**eaction **I**nclusion by **P**arsimony and **T**ranscript **D**istribution
v3.4.79
Transcriptomic analyses of bacteria have become instrumental to our understanding of their responses to changes in their environment. While traditional analyses have been informative, leveraging these datasets within genome-scale metabolic network reconstructions (GENREs) can provide greatly improved context for shifts in pathway utilization and downstream/upstream ramifications for changes in metabolic regulation. Many previous techniques for GENRE transcript integration have focused on creating maximum consensus with input datasets, but these approaches have been shown to generate less accurate metabolic predictions than a transcript-agnostic method of flux minimization (pFBA), which identifies the most efficient/economic patterns of metabolism given certain growth constraints. Despite this success, growth conditions are not always easily quantifiable and highlights the need for novel platforms that build from these findings. This method, known as RIPTiDe, combines these concepts and utilizes overall minimization of flux weighted by transcriptomic analysis to identify the most energy efficient pathways to achieve growth that include more highly transcribed enzymes, without previous insight into extracellular conditions. This platform could be important for revealing context-specific bacterial phenotypes in line with governing principles of adaptive evolution, that drive disease manifestation or interactions between microbes.
Please cite when using:
```
Jenior ML, Moutinho Jr TJ, Dougherty BV, & Papin JA. (2020). Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments. PLOS Comp Biol. https://doi.org/10.1371/journal.pcbi.1007099.
```
## Dependencies
```
>=python-3.6.4
>=cobra-0.15.3
>=pandas-0.24.1
>=symengine-0.4.0
>=scipy-1.3.0
```
## Installation
Installation is:
```
$ pip install riptide
```
### Arguments for core RIPTiDe functions:
**riptide.read_transcription_file() - Generates dictionary of transcriptomic abundances from a file**
```
REQUIRED
file : string
User-provided file name which contains gene IDs as rows and associated transcription values as columns per replicate
OPTIONAL
header : boolean
Defines if read abundance file has a header that needs to be ignored
Default is no header
sep: string
Defines what character separates entries on each line
Defaults to tab (.tsv)
rarefy : bool
Rarefies rounded transcript abundances to 90% of the smallest replicate
Default is False
level : int
Level by which to rarefy samples
Default is 100000
binning : boolean
Perform discrete binning of transcript abundances into quantiles
OPTIONAL, not advised
Default is False
quant_max : float
Largest quantile to consider
Default is 0.9
quant_min : float
Smallest quantile to consider
Default is 0.5
step : float
Step size for parsing quantiles
Default is 0.125
norm : bool
Normalize transcript abundances using RPM calculation
Performed by default
factor : numeric
Denominator for read normalization calculation
Default is 1e6 (RPM)
silent : bool
Silences std out
Default is False
```
**riptide.maxfit() - Create context-specific model based on transcript distribution with maximum fit of flux distribution to input transctiptome**
```
REQUIRED
model : cobra.Model
The model to be contextualized
transcriptome : dictionary
Dictionary of transcript abundances, output of read_transcription_file()
OPTIONAL
frac_min : float
Lower bound for range of minimal fractions to test
Default is 0.25
frac_max : float
Upper bound for range of minimal fractions to test
Default is 0.85
frac_step : float
Starting interval size within fraction range
Default is 0.1
prune : bool
Perform pruning step
Default is True
samples : int
Number of flux samples to collect
Default is 500
silent : bool
Silences std out
Default is False
minimum : float
Minimum linear coefficient allowed during weight calculation for pFBA
Default is False
conservative : bool
Conservatively remove inactive reactions based on GPR rules (all member reactions must be inactive to prune)
Default is False
objective : bool
Sets previous objective function as a constraint with minimum flux equal to user input fraction
Default is True
additive : bool
Pool transcription abundances for reactions with multiple contributing gene products
Default is False
direct : bool
Assigns both minimization and maximization step coefficents directly, instead of relying on abundance distribution
Default is False
set_bounds : bool
Uses flux variability analysis results from constrained model to set new bounds for all reactions
Default is True
tasks : list
List of gene or reaction ID strings for forced inclusion in final model (metabolic tasks or essential genes)
task_lb : float
Minimum flux bound for metabolic task reactions during pruning
Default is equal to threshold var
exclude : list
List of reaction ID strings for forced exclusion from final model
gpr : bool
Determines if GPR rules will be considered during coefficient assignment
Default is False
threshold : float
Minimum flux a reaction must acheive in order to avoid pruning during flux sum minimization step
Default is 1e-8
defined : False or list
User defined range of linear coeffients, needs to be defined in a list like [1, 0.5, 0.1, 0.01, 0.001]
Works best paired with binned abundance catagories from riptide.read_transcription_file()
Default is False
```
**riptide.contextualize() - Create context-specific model based on transcript distribution with user-defined objective flux minimum**
```
REQUIRED
model : cobra.Model
The model to be contextualized
OPTIONAL
transcriptome : dictionary
Dictionary of transcript abundances, output of read_transcription_file()
With default, an artifical transcriptome is generated where all abundances equal 1.0
fraction : float
Minimum objective fraction used during single run setting
Default is 0.8
* Other arguments from iterative implementation are carried over (excluding frac_min and frac_max)
```
**riptide.save_output() - Writes RIPTiDe results to files in a new directory**
```
REQUIRED
riptide_obj : RIPTiDe object
Class object creared by riptide.contextualize()
OPTIONAL
path : str
New directory to write output files
file_type : str
Type of output file for RIPTiDe model
Accepts either sbml or json
Default is JSON
silent : bool
Silences std out
Default is False
```
## Usage
**Comments before starting:**
- Make sure that genes in the transcriptome file matches those that are in your model.
- Check the example files for proper data formatting
- Binning genes into discrete thresholds for coefficient assignment is available in riptide.read_transcription_file() (not recommended)
- Opening the majority of exchange reactions (bounds = +/- 1000) may yeild better prediction when extracellular conditions are unknown
- The resulting RIPTiDe object has multiple properties including the context-specific model and flux analyses, accessing each is described below
```python
import riptide
my_model = cobra.io.read_sbml_model('tests/genre.sbml')
transcript_abundances_1 = riptide.read_transcription_file('tests/transcriptome1.tsv')
transcript_abundances_2 = riptide.read_transcription_file('tests/transcriptome2.tsv') # has replicates
riptide_object_1_a = riptide.contextualize(model=my_model, transcriptome=transcript_abundances_1)
riptide_object_1_b = riptide.contextualize(model=my_model, transcriptome=transcript_abundances_1, tasks=['rxn1'], exclude=['rxn2','rxn3'])
riptide.save_output(riptide_obj=riptide_object_1_a, path='~/Desktop/example_riptide_output')
```
### Example riptide.contextualize() stdout report:
```
Initializing model and integrating transcriptomic data...
Pruning zero flux subnetworks...
Analyzing context-specific flux distributions...
Running max fit RIPTiDe for objective fraction range: 0.65 to 0.85
Progress: 100%
Testing local fractions to 0.3...
Progress: 100%
Context-specific metabolism fit with 0.35 of optimal objective flux
Reactions pruned to 285 from 1129 (74.76% change)
Metabolites pruned to 285 from 1132 (74.82% change)
Flux through the objective DECREASED to ~54.71 from ~65.43 (16.38% change)
Context-specific metabolism correlates with transcriptome (r=0.149, p=0.011 *)
Max fit RIPTiDe completed in, 4 minutes and 33 seconds
```
In the final step, RIPTiDe assesses the fit of transcriptomic data for the calculated network activity through correlation of transcript abundance and median flux value for each corresponding reaction. The Spearman correlation coefficient and associated p-value are the reported following the fraction of network topology that is pruned during the flux minimization step.
Max fit RIPTiDe tests all minimum objective flux fractions over the provided range and returns only the model with the best Spearman correlation between context-specific flux for reactions and the associated transcriptomic values. Note, terminating search if a subsequent iteration has a lower correlation coefficient than the last could result from a local maxima and must be considered if an exhaustive analysis is preferred.
### Resulting RIPTiDe object (class) properties:
The resulting object is a container for the following data structures.
- **model** - Contextualized genome-scale metabolic network reconstruction
- **transcriptome** - Transcriptomic replicate abundances provided by user
- **percent_of_mapping** - Percent of genes in mapping file found in input GENRE
- **minimization_coefficients** - Linear coefficients used during flux sum minimization (based on transcriptome replicates)
- **maximization_coefficients** - Linear coefficients for each reaction based used during flux sampling
- **pruned** - Dictionary containing the IDs of genes, reactions, and metabolites pruned by RIPTiDe
- **flux_samples** - Flux samples from constrained model
- **flux_variability** - Flux variability analysis from constrained model
- **fraction_of_optimum** - Minimum specified percentage of optimal objective flux during contextualization
- **metabolic_tasks** - User defined reactions whose activity is saved from pruning
- **concordance** - Spearman correlation results between linear coefficients and median fluxes from sampling
- **gpr_integration** - Whether GPR rules were considered during assignment of linear coefficients
- **defined_coefficients** - Range of linear coefficients RIPTiDe is allowed to utilize provided as a list
- **included_important** - Reactions or Genes included in the final model which the user defined as important
- **additional_parameters** - Dictionary of additional parameters RIPTiDe uses
- **fraction_bounds** - Minimum and maximum values for the range of objective flux minimum fractions tested
- **maxfit_iters** - Objective flux and fit to transcriptome for each minimum flux fraction tested
**Examples of accessing components of RIPTiDe output:**
```python
context_specific_GENRE = riptide_object.model
context_specific_FVA = riptide_object.flux_variability
context_specific_flux_samples = riptide_object.flux_samples
```
## Additional Information
Thank you for your interest in RIPTiDe!
If you encounter any problems, please [file an issue](https://github.com/mjenior/riptide/issues) along with a detailed description.
Distributed under the terms of the [MIT](http://opensource.org/licenses/MIT) license, "riptide" is free and open source software
%package -n python3-riptide
Summary: Reaction Inclusion by Parsimony and Transcript Distribution (RIPTiDe)
Provides: python-riptide
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-riptide
# RIPTiDe
**R**eaction **I**nclusion by **P**arsimony and **T**ranscript **D**istribution
v3.4.79
Transcriptomic analyses of bacteria have become instrumental to our understanding of their responses to changes in their environment. While traditional analyses have been informative, leveraging these datasets within genome-scale metabolic network reconstructions (GENREs) can provide greatly improved context for shifts in pathway utilization and downstream/upstream ramifications for changes in metabolic regulation. Many previous techniques for GENRE transcript integration have focused on creating maximum consensus with input datasets, but these approaches have been shown to generate less accurate metabolic predictions than a transcript-agnostic method of flux minimization (pFBA), which identifies the most efficient/economic patterns of metabolism given certain growth constraints. Despite this success, growth conditions are not always easily quantifiable and highlights the need for novel platforms that build from these findings. This method, known as RIPTiDe, combines these concepts and utilizes overall minimization of flux weighted by transcriptomic analysis to identify the most energy efficient pathways to achieve growth that include more highly transcribed enzymes, without previous insight into extracellular conditions. This platform could be important for revealing context-specific bacterial phenotypes in line with governing principles of adaptive evolution, that drive disease manifestation or interactions between microbes.
Please cite when using:
```
Jenior ML, Moutinho Jr TJ, Dougherty BV, & Papin JA. (2020). Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments. PLOS Comp Biol. https://doi.org/10.1371/journal.pcbi.1007099.
```
## Dependencies
```
>=python-3.6.4
>=cobra-0.15.3
>=pandas-0.24.1
>=symengine-0.4.0
>=scipy-1.3.0
```
## Installation
Installation is:
```
$ pip install riptide
```
### Arguments for core RIPTiDe functions:
**riptide.read_transcription_file() - Generates dictionary of transcriptomic abundances from a file**
```
REQUIRED
file : string
User-provided file name which contains gene IDs as rows and associated transcription values as columns per replicate
OPTIONAL
header : boolean
Defines if read abundance file has a header that needs to be ignored
Default is no header
sep: string
Defines what character separates entries on each line
Defaults to tab (.tsv)
rarefy : bool
Rarefies rounded transcript abundances to 90% of the smallest replicate
Default is False
level : int
Level by which to rarefy samples
Default is 100000
binning : boolean
Perform discrete binning of transcript abundances into quantiles
OPTIONAL, not advised
Default is False
quant_max : float
Largest quantile to consider
Default is 0.9
quant_min : float
Smallest quantile to consider
Default is 0.5
step : float
Step size for parsing quantiles
Default is 0.125
norm : bool
Normalize transcript abundances using RPM calculation
Performed by default
factor : numeric
Denominator for read normalization calculation
Default is 1e6 (RPM)
silent : bool
Silences std out
Default is False
```
**riptide.maxfit() - Create context-specific model based on transcript distribution with maximum fit of flux distribution to input transctiptome**
```
REQUIRED
model : cobra.Model
The model to be contextualized
transcriptome : dictionary
Dictionary of transcript abundances, output of read_transcription_file()
OPTIONAL
frac_min : float
Lower bound for range of minimal fractions to test
Default is 0.25
frac_max : float
Upper bound for range of minimal fractions to test
Default is 0.85
frac_step : float
Starting interval size within fraction range
Default is 0.1
prune : bool
Perform pruning step
Default is True
samples : int
Number of flux samples to collect
Default is 500
silent : bool
Silences std out
Default is False
minimum : float
Minimum linear coefficient allowed during weight calculation for pFBA
Default is False
conservative : bool
Conservatively remove inactive reactions based on GPR rules (all member reactions must be inactive to prune)
Default is False
objective : bool
Sets previous objective function as a constraint with minimum flux equal to user input fraction
Default is True
additive : bool
Pool transcription abundances for reactions with multiple contributing gene products
Default is False
direct : bool
Assigns both minimization and maximization step coefficents directly, instead of relying on abundance distribution
Default is False
set_bounds : bool
Uses flux variability analysis results from constrained model to set new bounds for all reactions
Default is True
tasks : list
List of gene or reaction ID strings for forced inclusion in final model (metabolic tasks or essential genes)
task_lb : float
Minimum flux bound for metabolic task reactions during pruning
Default is equal to threshold var
exclude : list
List of reaction ID strings for forced exclusion from final model
gpr : bool
Determines if GPR rules will be considered during coefficient assignment
Default is False
threshold : float
Minimum flux a reaction must acheive in order to avoid pruning during flux sum minimization step
Default is 1e-8
defined : False or list
User defined range of linear coeffients, needs to be defined in a list like [1, 0.5, 0.1, 0.01, 0.001]
Works best paired with binned abundance catagories from riptide.read_transcription_file()
Default is False
```
**riptide.contextualize() - Create context-specific model based on transcript distribution with user-defined objective flux minimum**
```
REQUIRED
model : cobra.Model
The model to be contextualized
OPTIONAL
transcriptome : dictionary
Dictionary of transcript abundances, output of read_transcription_file()
With default, an artifical transcriptome is generated where all abundances equal 1.0
fraction : float
Minimum objective fraction used during single run setting
Default is 0.8
* Other arguments from iterative implementation are carried over (excluding frac_min and frac_max)
```
**riptide.save_output() - Writes RIPTiDe results to files in a new directory**
```
REQUIRED
riptide_obj : RIPTiDe object
Class object creared by riptide.contextualize()
OPTIONAL
path : str
New directory to write output files
file_type : str
Type of output file for RIPTiDe model
Accepts either sbml or json
Default is JSON
silent : bool
Silences std out
Default is False
```
## Usage
**Comments before starting:**
- Make sure that genes in the transcriptome file matches those that are in your model.
- Check the example files for proper data formatting
- Binning genes into discrete thresholds for coefficient assignment is available in riptide.read_transcription_file() (not recommended)
- Opening the majority of exchange reactions (bounds = +/- 1000) may yeild better prediction when extracellular conditions are unknown
- The resulting RIPTiDe object has multiple properties including the context-specific model and flux analyses, accessing each is described below
```python
import riptide
my_model = cobra.io.read_sbml_model('tests/genre.sbml')
transcript_abundances_1 = riptide.read_transcription_file('tests/transcriptome1.tsv')
transcript_abundances_2 = riptide.read_transcription_file('tests/transcriptome2.tsv') # has replicates
riptide_object_1_a = riptide.contextualize(model=my_model, transcriptome=transcript_abundances_1)
riptide_object_1_b = riptide.contextualize(model=my_model, transcriptome=transcript_abundances_1, tasks=['rxn1'], exclude=['rxn2','rxn3'])
riptide.save_output(riptide_obj=riptide_object_1_a, path='~/Desktop/example_riptide_output')
```
### Example riptide.contextualize() stdout report:
```
Initializing model and integrating transcriptomic data...
Pruning zero flux subnetworks...
Analyzing context-specific flux distributions...
Running max fit RIPTiDe for objective fraction range: 0.65 to 0.85
Progress: 100%
Testing local fractions to 0.3...
Progress: 100%
Context-specific metabolism fit with 0.35 of optimal objective flux
Reactions pruned to 285 from 1129 (74.76% change)
Metabolites pruned to 285 from 1132 (74.82% change)
Flux through the objective DECREASED to ~54.71 from ~65.43 (16.38% change)
Context-specific metabolism correlates with transcriptome (r=0.149, p=0.011 *)
Max fit RIPTiDe completed in, 4 minutes and 33 seconds
```
In the final step, RIPTiDe assesses the fit of transcriptomic data for the calculated network activity through correlation of transcript abundance and median flux value for each corresponding reaction. The Spearman correlation coefficient and associated p-value are the reported following the fraction of network topology that is pruned during the flux minimization step.
Max fit RIPTiDe tests all minimum objective flux fractions over the provided range and returns only the model with the best Spearman correlation between context-specific flux for reactions and the associated transcriptomic values. Note, terminating search if a subsequent iteration has a lower correlation coefficient than the last could result from a local maxima and must be considered if an exhaustive analysis is preferred.
### Resulting RIPTiDe object (class) properties:
The resulting object is a container for the following data structures.
- **model** - Contextualized genome-scale metabolic network reconstruction
- **transcriptome** - Transcriptomic replicate abundances provided by user
- **percent_of_mapping** - Percent of genes in mapping file found in input GENRE
- **minimization_coefficients** - Linear coefficients used during flux sum minimization (based on transcriptome replicates)
- **maximization_coefficients** - Linear coefficients for each reaction based used during flux sampling
- **pruned** - Dictionary containing the IDs of genes, reactions, and metabolites pruned by RIPTiDe
- **flux_samples** - Flux samples from constrained model
- **flux_variability** - Flux variability analysis from constrained model
- **fraction_of_optimum** - Minimum specified percentage of optimal objective flux during contextualization
- **metabolic_tasks** - User defined reactions whose activity is saved from pruning
- **concordance** - Spearman correlation results between linear coefficients and median fluxes from sampling
- **gpr_integration** - Whether GPR rules were considered during assignment of linear coefficients
- **defined_coefficients** - Range of linear coefficients RIPTiDe is allowed to utilize provided as a list
- **included_important** - Reactions or Genes included in the final model which the user defined as important
- **additional_parameters** - Dictionary of additional parameters RIPTiDe uses
- **fraction_bounds** - Minimum and maximum values for the range of objective flux minimum fractions tested
- **maxfit_iters** - Objective flux and fit to transcriptome for each minimum flux fraction tested
**Examples of accessing components of RIPTiDe output:**
```python
context_specific_GENRE = riptide_object.model
context_specific_FVA = riptide_object.flux_variability
context_specific_flux_samples = riptide_object.flux_samples
```
## Additional Information
Thank you for your interest in RIPTiDe!
If you encounter any problems, please [file an issue](https://github.com/mjenior/riptide/issues) along with a detailed description.
Distributed under the terms of the [MIT](http://opensource.org/licenses/MIT) license, "riptide" is free and open source software
%package help
Summary: Development documents and examples for riptide
Provides: python3-riptide-doc
%description help
# RIPTiDe
**R**eaction **I**nclusion by **P**arsimony and **T**ranscript **D**istribution
v3.4.79
Transcriptomic analyses of bacteria have become instrumental to our understanding of their responses to changes in their environment. While traditional analyses have been informative, leveraging these datasets within genome-scale metabolic network reconstructions (GENREs) can provide greatly improved context for shifts in pathway utilization and downstream/upstream ramifications for changes in metabolic regulation. Many previous techniques for GENRE transcript integration have focused on creating maximum consensus with input datasets, but these approaches have been shown to generate less accurate metabolic predictions than a transcript-agnostic method of flux minimization (pFBA), which identifies the most efficient/economic patterns of metabolism given certain growth constraints. Despite this success, growth conditions are not always easily quantifiable and highlights the need for novel platforms that build from these findings. This method, known as RIPTiDe, combines these concepts and utilizes overall minimization of flux weighted by transcriptomic analysis to identify the most energy efficient pathways to achieve growth that include more highly transcribed enzymes, without previous insight into extracellular conditions. This platform could be important for revealing context-specific bacterial phenotypes in line with governing principles of adaptive evolution, that drive disease manifestation or interactions between microbes.
Please cite when using:
```
Jenior ML, Moutinho Jr TJ, Dougherty BV, & Papin JA. (2020). Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments. PLOS Comp Biol. https://doi.org/10.1371/journal.pcbi.1007099.
```
## Dependencies
```
>=python-3.6.4
>=cobra-0.15.3
>=pandas-0.24.1
>=symengine-0.4.0
>=scipy-1.3.0
```
## Installation
Installation is:
```
$ pip install riptide
```
### Arguments for core RIPTiDe functions:
**riptide.read_transcription_file() - Generates dictionary of transcriptomic abundances from a file**
```
REQUIRED
file : string
User-provided file name which contains gene IDs as rows and associated transcription values as columns per replicate
OPTIONAL
header : boolean
Defines if read abundance file has a header that needs to be ignored
Default is no header
sep: string
Defines what character separates entries on each line
Defaults to tab (.tsv)
rarefy : bool
Rarefies rounded transcript abundances to 90% of the smallest replicate
Default is False
level : int
Level by which to rarefy samples
Default is 100000
binning : boolean
Perform discrete binning of transcript abundances into quantiles
OPTIONAL, not advised
Default is False
quant_max : float
Largest quantile to consider
Default is 0.9
quant_min : float
Smallest quantile to consider
Default is 0.5
step : float
Step size for parsing quantiles
Default is 0.125
norm : bool
Normalize transcript abundances using RPM calculation
Performed by default
factor : numeric
Denominator for read normalization calculation
Default is 1e6 (RPM)
silent : bool
Silences std out
Default is False
```
**riptide.maxfit() - Create context-specific model based on transcript distribution with maximum fit of flux distribution to input transctiptome**
```
REQUIRED
model : cobra.Model
The model to be contextualized
transcriptome : dictionary
Dictionary of transcript abundances, output of read_transcription_file()
OPTIONAL
frac_min : float
Lower bound for range of minimal fractions to test
Default is 0.25
frac_max : float
Upper bound for range of minimal fractions to test
Default is 0.85
frac_step : float
Starting interval size within fraction range
Default is 0.1
prune : bool
Perform pruning step
Default is True
samples : int
Number of flux samples to collect
Default is 500
silent : bool
Silences std out
Default is False
minimum : float
Minimum linear coefficient allowed during weight calculation for pFBA
Default is False
conservative : bool
Conservatively remove inactive reactions based on GPR rules (all member reactions must be inactive to prune)
Default is False
objective : bool
Sets previous objective function as a constraint with minimum flux equal to user input fraction
Default is True
additive : bool
Pool transcription abundances for reactions with multiple contributing gene products
Default is False
direct : bool
Assigns both minimization and maximization step coefficents directly, instead of relying on abundance distribution
Default is False
set_bounds : bool
Uses flux variability analysis results from constrained model to set new bounds for all reactions
Default is True
tasks : list
List of gene or reaction ID strings for forced inclusion in final model (metabolic tasks or essential genes)
task_lb : float
Minimum flux bound for metabolic task reactions during pruning
Default is equal to threshold var
exclude : list
List of reaction ID strings for forced exclusion from final model
gpr : bool
Determines if GPR rules will be considered during coefficient assignment
Default is False
threshold : float
Minimum flux a reaction must acheive in order to avoid pruning during flux sum minimization step
Default is 1e-8
defined : False or list
User defined range of linear coeffients, needs to be defined in a list like [1, 0.5, 0.1, 0.01, 0.001]
Works best paired with binned abundance catagories from riptide.read_transcription_file()
Default is False
```
**riptide.contextualize() - Create context-specific model based on transcript distribution with user-defined objective flux minimum**
```
REQUIRED
model : cobra.Model
The model to be contextualized
OPTIONAL
transcriptome : dictionary
Dictionary of transcript abundances, output of read_transcription_file()
With default, an artifical transcriptome is generated where all abundances equal 1.0
fraction : float
Minimum objective fraction used during single run setting
Default is 0.8
* Other arguments from iterative implementation are carried over (excluding frac_min and frac_max)
```
**riptide.save_output() - Writes RIPTiDe results to files in a new directory**
```
REQUIRED
riptide_obj : RIPTiDe object
Class object creared by riptide.contextualize()
OPTIONAL
path : str
New directory to write output files
file_type : str
Type of output file for RIPTiDe model
Accepts either sbml or json
Default is JSON
silent : bool
Silences std out
Default is False
```
## Usage
**Comments before starting:**
- Make sure that genes in the transcriptome file matches those that are in your model.
- Check the example files for proper data formatting
- Binning genes into discrete thresholds for coefficient assignment is available in riptide.read_transcription_file() (not recommended)
- Opening the majority of exchange reactions (bounds = +/- 1000) may yeild better prediction when extracellular conditions are unknown
- The resulting RIPTiDe object has multiple properties including the context-specific model and flux analyses, accessing each is described below
```python
import riptide
my_model = cobra.io.read_sbml_model('tests/genre.sbml')
transcript_abundances_1 = riptide.read_transcription_file('tests/transcriptome1.tsv')
transcript_abundances_2 = riptide.read_transcription_file('tests/transcriptome2.tsv') # has replicates
riptide_object_1_a = riptide.contextualize(model=my_model, transcriptome=transcript_abundances_1)
riptide_object_1_b = riptide.contextualize(model=my_model, transcriptome=transcript_abundances_1, tasks=['rxn1'], exclude=['rxn2','rxn3'])
riptide.save_output(riptide_obj=riptide_object_1_a, path='~/Desktop/example_riptide_output')
```
### Example riptide.contextualize() stdout report:
```
Initializing model and integrating transcriptomic data...
Pruning zero flux subnetworks...
Analyzing context-specific flux distributions...
Running max fit RIPTiDe for objective fraction range: 0.65 to 0.85
Progress: 100%
Testing local fractions to 0.3...
Progress: 100%
Context-specific metabolism fit with 0.35 of optimal objective flux
Reactions pruned to 285 from 1129 (74.76% change)
Metabolites pruned to 285 from 1132 (74.82% change)
Flux through the objective DECREASED to ~54.71 from ~65.43 (16.38% change)
Context-specific metabolism correlates with transcriptome (r=0.149, p=0.011 *)
Max fit RIPTiDe completed in, 4 minutes and 33 seconds
```
In the final step, RIPTiDe assesses the fit of transcriptomic data for the calculated network activity through correlation of transcript abundance and median flux value for each corresponding reaction. The Spearman correlation coefficient and associated p-value are the reported following the fraction of network topology that is pruned during the flux minimization step.
Max fit RIPTiDe tests all minimum objective flux fractions over the provided range and returns only the model with the best Spearman correlation between context-specific flux for reactions and the associated transcriptomic values. Note, terminating search if a subsequent iteration has a lower correlation coefficient than the last could result from a local maxima and must be considered if an exhaustive analysis is preferred.
### Resulting RIPTiDe object (class) properties:
The resulting object is a container for the following data structures.
- **model** - Contextualized genome-scale metabolic network reconstruction
- **transcriptome** - Transcriptomic replicate abundances provided by user
- **percent_of_mapping** - Percent of genes in mapping file found in input GENRE
- **minimization_coefficients** - Linear coefficients used during flux sum minimization (based on transcriptome replicates)
- **maximization_coefficients** - Linear coefficients for each reaction based used during flux sampling
- **pruned** - Dictionary containing the IDs of genes, reactions, and metabolites pruned by RIPTiDe
- **flux_samples** - Flux samples from constrained model
- **flux_variability** - Flux variability analysis from constrained model
- **fraction_of_optimum** - Minimum specified percentage of optimal objective flux during contextualization
- **metabolic_tasks** - User defined reactions whose activity is saved from pruning
- **concordance** - Spearman correlation results between linear coefficients and median fluxes from sampling
- **gpr_integration** - Whether GPR rules were considered during assignment of linear coefficients
- **defined_coefficients** - Range of linear coefficients RIPTiDe is allowed to utilize provided as a list
- **included_important** - Reactions or Genes included in the final model which the user defined as important
- **additional_parameters** - Dictionary of additional parameters RIPTiDe uses
- **fraction_bounds** - Minimum and maximum values for the range of objective flux minimum fractions tested
- **maxfit_iters** - Objective flux and fit to transcriptome for each minimum flux fraction tested
**Examples of accessing components of RIPTiDe output:**
```python
context_specific_GENRE = riptide_object.model
context_specific_FVA = riptide_object.flux_variability
context_specific_flux_samples = riptide_object.flux_samples
```
## Additional Information
Thank you for your interest in RIPTiDe!
If you encounter any problems, please [file an issue](https://github.com/mjenior/riptide/issues) along with a detailed description.
Distributed under the terms of the [MIT](http://opensource.org/licenses/MIT) license, "riptide" is free and open source software
%prep
%autosetup -n riptide-3.4.79
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-riptide -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 3.4.79-1
- Package Spec generated
|