summaryrefslogtreecommitdiff
path: root/python-riskfolio-lib.spec
blob: 3b7f359d5185f298ffe5ae732b7c2b20235a433c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
%global _empty_manifest_terminate_build 0
Name:		python-Riskfolio-Lib
Version:	4.2.0
Release:	1
Summary:	Portfolio Optimization and Quantitative Strategic Asset Allocation in Python
License:	BSD (3-clause)
URL:		https://github.com/dcajasn/Riskfolio-Lib
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ce/ff/32a0ad20efbbda6078446b555145ad2be0da65cace9023a5873b52c4d364/Riskfolio-Lib-4.2.0.tar.gz

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-pandas
Requires:	python3-matplotlib
Requires:	python3-cvxpy
Requires:	python3-scikit-learn
Requires:	python3-statsmodels
Requires:	python3-arch
Requires:	python3-xlsxwriter
Requires:	python3-networkx
Requires:	python3-astropy
Requires:	python3-pybind11

%description
# Riskfolio-Lib

**Quantitative Strategic Asset Allocation, Easy for Everyone.**

<div class="row">
<img src="https://raw.githubusercontent.com/dcajasn/Riskfolio-Lib/master/docs/source/images/MSV_Frontier.png" height="200">
<img src="https://raw.githubusercontent.com/dcajasn/Riskfolio-Lib/master/docs/source/images/Pie_Chart.png" height="200">
</div>

[![](https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86)](https://github.com/sponsors/dcajasn)

<a href='https://ko-fi.com/B0B833SXD' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=2' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

[![GitHub stars](https://img.shields.io/github/stars/dcajasn/Riskfolio-Lib?color=green)](https://github.com/dcajasn/Riskfolio-Lib/stargazers)
[![Downloads](https://static.pepy.tech/personalized-badge/riskfolio-lib?period=month&units=none&left_color=grey&right_color=orange&left_text=Downloads/Month)](https://pepy.tech/project/riskfolio-lib)
[![Documentation Status](https://readthedocs.org/projects/riskfolio-lib/badge/?version=latest)](https://riskfolio-lib.readthedocs.io/en/latest/?badge=latest)
[![GitHub license](https://img.shields.io/github/license/dcajasn/Riskfolio-Lib)](https://github.com/dcajasn/Riskfolio-Lib/blob/master/LICENSE.txt)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/dcajasn/Riskfolio-Lib/HEAD)

[![Star History Chart](https://api.star-history.com/svg?repos=dcajasn/Riskfolio-Lib&type=Timeline)](https://star-history.com/#dcajasn/Riskfolio-Lib&Timeline)

## Description

Riskfolio-Lib is a library for making quantitative strategic asset allocation
or portfolio optimization in Python made in Peru &#x1F1F5;&#x1F1EA;. Its objective is to help students, academics and practitioners to build investment portfolios based on mathematically complex models with low effort. It is built on top of
[cvxpy](https://www.cvxpy.org/) and closely integrated
with [pandas](https://pandas.pydata.org/) data structures.

Some of key functionalities that Riskfolio-Lib offers:

- Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 4 objective functions:

    - Minimum Risk.
    - Maximum Return.
    - Maximum Utility Function.
    - Maximum Risk Adjusted Return Ratio.

- Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 22 convex risk measures:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Square Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Gini Mean Difference (GMD).
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    - Range.
    &nbsp;
    
    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Square Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio).
    - Second Lower Partial Moment (Sortino Ratio).
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    - Worst Case Realization (Minimax).
    &nbsp;
    
    **Drawdown Risk Measures:**

    - Average Drawdown for uncompounded cumulative returns.
    - Ulcer Index for uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for uncompounded cumulative returns.
    - Maximum Drawdown (Calmar Ratio) for uncompounded cumulative returns.

- Risk Parity Portfolio Optimization with 18 convex risk measures:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Square Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Gini Mean Difference (GMD).
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    &nbsp;

    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Square Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio)
    - Second Lower Partial Moment (Sortino Ratio)
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    &nbsp;
    
    **Drawdown Risk Measures:**

    - Ulcer Index for uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for uncompounded cumulative returns.

- Hierarchical Clustering Portfolio Optimization: Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) with 24 risk measures using naive risk parity:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Variance.
    - Fourth Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Range.
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    &nbsp;
    
    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Fourth Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio).
    - Second Lower Partial Moment (Sortino Ratio).
    - Value at Risk (VaR).
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    - Worst Case Realization (Minimax).
    &nbsp;
    
    **Drawdown Risk Measures:**


    - Average Drawdown for compounded and uncompounded cumulative returns.
    - Ulcer Index for compounded and uncompounded cumulative returns.
    - Drawdown at Risk (DaR) for compounded and uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for compounded and uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for compounded and uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for compounded and uncompounded cumulative returns.
    - Maximum Drawdown (Calmar Ratio) for compounded and uncompounded cumulative returns.

- Nested Clustered Optimization (NCO) with four objective functions and the available risk measures to each objective:

    - Minimum Risk.
    - Maximum Return.
    - Maximum Utility Function.
    - Equal Risk Contribution.

- Worst Case Mean Variance Portfolio Optimization.
- Relaxed Risk Parity Portfolio Optimization.
- Ordered Weighted Averaging (OWA) Portfolio Optimization.
- Portfolio optimization with Black Litterman model.
- Portfolio optimization with Risk Factors model.
- Portfolio optimization with Black Litterman Bayesian model.
- Portfolio optimization with Augmented Black Litterman model.
- Portfolio optimization with constraints on tracking error and turnover.
- Portfolio optimization with short positions and leveraged portfolios.
- Portfolio optimization with constraints on number of assets and number of effective assets.
- Tools to build efficient frontier for 22 convex risk measures.
- Tools to build linear constraints on assets, asset classes and risk factors.
- Tools to build views on assets and asset classes.
- Tools to build views on risk factors.
- Tools to build risk contribution constraints per asset classes.
- Tools to build bounds constraints for Hierarchical Clustering Portfolios.
- Tools to calculate risk measures.
- Tools to calculate risk contributions per asset.
- Tools to calculate uncertainty sets for mean vector and covariance matrix.
- Tools to calculate assets clusters based on codependence metrics.
- Tools to estimate loadings matrix (Stepwise Regression and Principal Components Regression).
- Tools to visualizing portfolio properties and risk measures.
- Tools to build reports on Jupyter Notebook and Excel. 
- Option to use commercial optimization solver like MOSEK or GUROBI for large scale problems.


## Documentation

Online documentation is available at [Documentation](https://riskfolio-lib.readthedocs.io/en/latest/).

The docs include a [tutorial](https://riskfolio-lib.readthedocs.io/en/latest/examples.html)
with examples that shows the capacities of Riskfolio-Lib.


## Dependencies

Riskfolio-Lib supports Python 3.7+.

Installation requires:
- [numpy](http://www.numpy.org/) >= 1.17.0
- [scipy](https://www.scipy.org/) >= 1.1.0
- [pandas](https://pandas.pydata.org/) >= 1.0.0
- [matplotlib](https://matplotlib.org/) >= 3.3.0
- [cvxpy](https://www.cvxpy.org/) >= 1.0.15
- [scikit-learn](https://scikit-learn.org/stable/) >= 1.0.0
- [statsmodels](https://www.statsmodels.org/) >= 0.10.1
- [arch](https://bashtage.github.io/arch/) >= 4.15
- [xlsxwriter](https://xlsxwriter.readthedocs.io) >= 1.3.7
- [networkx](https://networkx.org) >= 2.5.1
- [astropy](https://www.astropy.org) >= 4.3.1
- [pybind11[(https://pybind11.readthedocs.io/en/stable/) >= 2.10.1

## Installation

The latest stable release (and older versions) can be installed from PyPI:

    pip install riskfolio-lib

## Citing

If you use Riskfolio-Lib for published work, please use the following BibTeX entry:

```
@misc{riskfolio,
      author = {Dany Cajas},
      title = {Riskfolio-Lib (4.2.0)},
      year  = {2023},
      url   = {https://github.com/dcajasn/Riskfolio-Lib},
      }
```
 
## Development

Riskfolio-Lib development takes place on Github: https://github.com/dcajasn/Riskfolio-Lib


## Consulting Fees

Riskfolio-Lib is an open-source project, however due it's a project that is not financed for any institution, I started charging for consultancies that are not related to errors in source code. Our fees are as follows:

- $ 25 USD (United States Dollars) per question that doesn't require to check code.
- $ 50 USD to check a small size script or code (less than 200 lines of code). The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.
- $ 100 USD to check a medium size script or code (between 201 and 600 lines of code). The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.
- For large size script or code (more than 600 lines of code) the fee is variable depending on the size of the code. The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.

**All consulting must be paid in advance**.

You can contact me through:

- __[LinkedIn](https://www.linkedin.com/in/dany-cajas/)__
- __[Gmail](dcajasn@gmail.com)__

You can pay using one of the following channels:

- __[Github Sponsorship](https://github.com/sponsors/dcajasn)__

- <a href='https://ko-fi.com/B0B833SXD' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=2' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

## RoadMap

The plan for this module is to add more functions that will be very useful
to asset managers.

- Add more functions based on suggestion of users.


%package -n python3-Riskfolio-Lib
Summary:	Portfolio Optimization and Quantitative Strategic Asset Allocation in Python
Provides:	python-Riskfolio-Lib
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-Riskfolio-Lib
# Riskfolio-Lib

**Quantitative Strategic Asset Allocation, Easy for Everyone.**

<div class="row">
<img src="https://raw.githubusercontent.com/dcajasn/Riskfolio-Lib/master/docs/source/images/MSV_Frontier.png" height="200">
<img src="https://raw.githubusercontent.com/dcajasn/Riskfolio-Lib/master/docs/source/images/Pie_Chart.png" height="200">
</div>

[![](https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86)](https://github.com/sponsors/dcajasn)

<a href='https://ko-fi.com/B0B833SXD' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=2' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

[![GitHub stars](https://img.shields.io/github/stars/dcajasn/Riskfolio-Lib?color=green)](https://github.com/dcajasn/Riskfolio-Lib/stargazers)
[![Downloads](https://static.pepy.tech/personalized-badge/riskfolio-lib?period=month&units=none&left_color=grey&right_color=orange&left_text=Downloads/Month)](https://pepy.tech/project/riskfolio-lib)
[![Documentation Status](https://readthedocs.org/projects/riskfolio-lib/badge/?version=latest)](https://riskfolio-lib.readthedocs.io/en/latest/?badge=latest)
[![GitHub license](https://img.shields.io/github/license/dcajasn/Riskfolio-Lib)](https://github.com/dcajasn/Riskfolio-Lib/blob/master/LICENSE.txt)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/dcajasn/Riskfolio-Lib/HEAD)

[![Star History Chart](https://api.star-history.com/svg?repos=dcajasn/Riskfolio-Lib&type=Timeline)](https://star-history.com/#dcajasn/Riskfolio-Lib&Timeline)

## Description

Riskfolio-Lib is a library for making quantitative strategic asset allocation
or portfolio optimization in Python made in Peru &#x1F1F5;&#x1F1EA;. Its objective is to help students, academics and practitioners to build investment portfolios based on mathematically complex models with low effort. It is built on top of
[cvxpy](https://www.cvxpy.org/) and closely integrated
with [pandas](https://pandas.pydata.org/) data structures.

Some of key functionalities that Riskfolio-Lib offers:

- Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 4 objective functions:

    - Minimum Risk.
    - Maximum Return.
    - Maximum Utility Function.
    - Maximum Risk Adjusted Return Ratio.

- Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 22 convex risk measures:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Square Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Gini Mean Difference (GMD).
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    - Range.
    &nbsp;
    
    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Square Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio).
    - Second Lower Partial Moment (Sortino Ratio).
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    - Worst Case Realization (Minimax).
    &nbsp;
    
    **Drawdown Risk Measures:**

    - Average Drawdown for uncompounded cumulative returns.
    - Ulcer Index for uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for uncompounded cumulative returns.
    - Maximum Drawdown (Calmar Ratio) for uncompounded cumulative returns.

- Risk Parity Portfolio Optimization with 18 convex risk measures:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Square Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Gini Mean Difference (GMD).
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    &nbsp;

    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Square Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio)
    - Second Lower Partial Moment (Sortino Ratio)
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    &nbsp;
    
    **Drawdown Risk Measures:**

    - Ulcer Index for uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for uncompounded cumulative returns.

- Hierarchical Clustering Portfolio Optimization: Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) with 24 risk measures using naive risk parity:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Variance.
    - Fourth Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Range.
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    &nbsp;
    
    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Fourth Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio).
    - Second Lower Partial Moment (Sortino Ratio).
    - Value at Risk (VaR).
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    - Worst Case Realization (Minimax).
    &nbsp;
    
    **Drawdown Risk Measures:**


    - Average Drawdown for compounded and uncompounded cumulative returns.
    - Ulcer Index for compounded and uncompounded cumulative returns.
    - Drawdown at Risk (DaR) for compounded and uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for compounded and uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for compounded and uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for compounded and uncompounded cumulative returns.
    - Maximum Drawdown (Calmar Ratio) for compounded and uncompounded cumulative returns.

- Nested Clustered Optimization (NCO) with four objective functions and the available risk measures to each objective:

    - Minimum Risk.
    - Maximum Return.
    - Maximum Utility Function.
    - Equal Risk Contribution.

- Worst Case Mean Variance Portfolio Optimization.
- Relaxed Risk Parity Portfolio Optimization.
- Ordered Weighted Averaging (OWA) Portfolio Optimization.
- Portfolio optimization with Black Litterman model.
- Portfolio optimization with Risk Factors model.
- Portfolio optimization with Black Litterman Bayesian model.
- Portfolio optimization with Augmented Black Litterman model.
- Portfolio optimization with constraints on tracking error and turnover.
- Portfolio optimization with short positions and leveraged portfolios.
- Portfolio optimization with constraints on number of assets and number of effective assets.
- Tools to build efficient frontier for 22 convex risk measures.
- Tools to build linear constraints on assets, asset classes and risk factors.
- Tools to build views on assets and asset classes.
- Tools to build views on risk factors.
- Tools to build risk contribution constraints per asset classes.
- Tools to build bounds constraints for Hierarchical Clustering Portfolios.
- Tools to calculate risk measures.
- Tools to calculate risk contributions per asset.
- Tools to calculate uncertainty sets for mean vector and covariance matrix.
- Tools to calculate assets clusters based on codependence metrics.
- Tools to estimate loadings matrix (Stepwise Regression and Principal Components Regression).
- Tools to visualizing portfolio properties and risk measures.
- Tools to build reports on Jupyter Notebook and Excel. 
- Option to use commercial optimization solver like MOSEK or GUROBI for large scale problems.


## Documentation

Online documentation is available at [Documentation](https://riskfolio-lib.readthedocs.io/en/latest/).

The docs include a [tutorial](https://riskfolio-lib.readthedocs.io/en/latest/examples.html)
with examples that shows the capacities of Riskfolio-Lib.


## Dependencies

Riskfolio-Lib supports Python 3.7+.

Installation requires:
- [numpy](http://www.numpy.org/) >= 1.17.0
- [scipy](https://www.scipy.org/) >= 1.1.0
- [pandas](https://pandas.pydata.org/) >= 1.0.0
- [matplotlib](https://matplotlib.org/) >= 3.3.0
- [cvxpy](https://www.cvxpy.org/) >= 1.0.15
- [scikit-learn](https://scikit-learn.org/stable/) >= 1.0.0
- [statsmodels](https://www.statsmodels.org/) >= 0.10.1
- [arch](https://bashtage.github.io/arch/) >= 4.15
- [xlsxwriter](https://xlsxwriter.readthedocs.io) >= 1.3.7
- [networkx](https://networkx.org) >= 2.5.1
- [astropy](https://www.astropy.org) >= 4.3.1
- [pybind11[(https://pybind11.readthedocs.io/en/stable/) >= 2.10.1

## Installation

The latest stable release (and older versions) can be installed from PyPI:

    pip install riskfolio-lib

## Citing

If you use Riskfolio-Lib for published work, please use the following BibTeX entry:

```
@misc{riskfolio,
      author = {Dany Cajas},
      title = {Riskfolio-Lib (4.2.0)},
      year  = {2023},
      url   = {https://github.com/dcajasn/Riskfolio-Lib},
      }
```
 
## Development

Riskfolio-Lib development takes place on Github: https://github.com/dcajasn/Riskfolio-Lib


## Consulting Fees

Riskfolio-Lib is an open-source project, however due it's a project that is not financed for any institution, I started charging for consultancies that are not related to errors in source code. Our fees are as follows:

- $ 25 USD (United States Dollars) per question that doesn't require to check code.
- $ 50 USD to check a small size script or code (less than 200 lines of code). The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.
- $ 100 USD to check a medium size script or code (between 201 and 600 lines of code). The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.
- For large size script or code (more than 600 lines of code) the fee is variable depending on the size of the code. The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.

**All consulting must be paid in advance**.

You can contact me through:

- __[LinkedIn](https://www.linkedin.com/in/dany-cajas/)__
- __[Gmail](dcajasn@gmail.com)__

You can pay using one of the following channels:

- __[Github Sponsorship](https://github.com/sponsors/dcajasn)__

- <a href='https://ko-fi.com/B0B833SXD' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=2' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

## RoadMap

The plan for this module is to add more functions that will be very useful
to asset managers.

- Add more functions based on suggestion of users.


%package help
Summary:	Development documents and examples for Riskfolio-Lib
Provides:	python3-Riskfolio-Lib-doc
%description help
# Riskfolio-Lib

**Quantitative Strategic Asset Allocation, Easy for Everyone.**

<div class="row">
<img src="https://raw.githubusercontent.com/dcajasn/Riskfolio-Lib/master/docs/source/images/MSV_Frontier.png" height="200">
<img src="https://raw.githubusercontent.com/dcajasn/Riskfolio-Lib/master/docs/source/images/Pie_Chart.png" height="200">
</div>

[![](https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86)](https://github.com/sponsors/dcajasn)

<a href='https://ko-fi.com/B0B833SXD' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=2' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

[![GitHub stars](https://img.shields.io/github/stars/dcajasn/Riskfolio-Lib?color=green)](https://github.com/dcajasn/Riskfolio-Lib/stargazers)
[![Downloads](https://static.pepy.tech/personalized-badge/riskfolio-lib?period=month&units=none&left_color=grey&right_color=orange&left_text=Downloads/Month)](https://pepy.tech/project/riskfolio-lib)
[![Documentation Status](https://readthedocs.org/projects/riskfolio-lib/badge/?version=latest)](https://riskfolio-lib.readthedocs.io/en/latest/?badge=latest)
[![GitHub license](https://img.shields.io/github/license/dcajasn/Riskfolio-Lib)](https://github.com/dcajasn/Riskfolio-Lib/blob/master/LICENSE.txt)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/dcajasn/Riskfolio-Lib/HEAD)

[![Star History Chart](https://api.star-history.com/svg?repos=dcajasn/Riskfolio-Lib&type=Timeline)](https://star-history.com/#dcajasn/Riskfolio-Lib&Timeline)

## Description

Riskfolio-Lib is a library for making quantitative strategic asset allocation
or portfolio optimization in Python made in Peru &#x1F1F5;&#x1F1EA;. Its objective is to help students, academics and practitioners to build investment portfolios based on mathematically complex models with low effort. It is built on top of
[cvxpy](https://www.cvxpy.org/) and closely integrated
with [pandas](https://pandas.pydata.org/) data structures.

Some of key functionalities that Riskfolio-Lib offers:

- Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 4 objective functions:

    - Minimum Risk.
    - Maximum Return.
    - Maximum Utility Function.
    - Maximum Risk Adjusted Return Ratio.

- Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 22 convex risk measures:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Square Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Gini Mean Difference (GMD).
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    - Range.
    &nbsp;
    
    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Square Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio).
    - Second Lower Partial Moment (Sortino Ratio).
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    - Worst Case Realization (Minimax).
    &nbsp;
    
    **Drawdown Risk Measures:**

    - Average Drawdown for uncompounded cumulative returns.
    - Ulcer Index for uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for uncompounded cumulative returns.
    - Maximum Drawdown (Calmar Ratio) for uncompounded cumulative returns.

- Risk Parity Portfolio Optimization with 18 convex risk measures:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Square Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Gini Mean Difference (GMD).
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    &nbsp;

    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Square Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio)
    - Second Lower Partial Moment (Sortino Ratio)
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    &nbsp;
    
    **Drawdown Risk Measures:**

    - Ulcer Index for uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for uncompounded cumulative returns.

- Hierarchical Clustering Portfolio Optimization: Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) with 24 risk measures using naive risk parity:

    **Dispersion Risk Measures:**

    - Standard Deviation.
    - Variance.
    - Fourth Root Kurtosis.
    - Mean Absolute Deviation (MAD).
    - Range.
    - Conditional Value at Risk Range.
    - Tail Gini Range.
    &nbsp;
    
    **Downside Risk Measures:**

    - Semi Standard Deviation.
    - Fourth Root Semi Kurtosis.
    - First Lower Partial Moment (Omega Ratio).
    - Second Lower Partial Moment (Sortino Ratio).
    - Value at Risk (VaR).
    - Conditional Value at Risk (CVaR).
    - Tail Gini.
    - Entropic Value at Risk (EVaR).
    - Relativistic Value at Risk (RLVaR).
    - Worst Case Realization (Minimax).
    &nbsp;
    
    **Drawdown Risk Measures:**


    - Average Drawdown for compounded and uncompounded cumulative returns.
    - Ulcer Index for compounded and uncompounded cumulative returns.
    - Drawdown at Risk (DaR) for compounded and uncompounded cumulative returns.
    - Conditional Drawdown at Risk (CDaR) for compounded and uncompounded cumulative returns.
    - Entropic Drawdown at Risk (EDaR) for compounded and uncompounded cumulative returns.
    - Relativistic Drawdown at Risk (RLDaR) for compounded and uncompounded cumulative returns.
    - Maximum Drawdown (Calmar Ratio) for compounded and uncompounded cumulative returns.

- Nested Clustered Optimization (NCO) with four objective functions and the available risk measures to each objective:

    - Minimum Risk.
    - Maximum Return.
    - Maximum Utility Function.
    - Equal Risk Contribution.

- Worst Case Mean Variance Portfolio Optimization.
- Relaxed Risk Parity Portfolio Optimization.
- Ordered Weighted Averaging (OWA) Portfolio Optimization.
- Portfolio optimization with Black Litterman model.
- Portfolio optimization with Risk Factors model.
- Portfolio optimization with Black Litterman Bayesian model.
- Portfolio optimization with Augmented Black Litterman model.
- Portfolio optimization with constraints on tracking error and turnover.
- Portfolio optimization with short positions and leveraged portfolios.
- Portfolio optimization with constraints on number of assets and number of effective assets.
- Tools to build efficient frontier for 22 convex risk measures.
- Tools to build linear constraints on assets, asset classes and risk factors.
- Tools to build views on assets and asset classes.
- Tools to build views on risk factors.
- Tools to build risk contribution constraints per asset classes.
- Tools to build bounds constraints for Hierarchical Clustering Portfolios.
- Tools to calculate risk measures.
- Tools to calculate risk contributions per asset.
- Tools to calculate uncertainty sets for mean vector and covariance matrix.
- Tools to calculate assets clusters based on codependence metrics.
- Tools to estimate loadings matrix (Stepwise Regression and Principal Components Regression).
- Tools to visualizing portfolio properties and risk measures.
- Tools to build reports on Jupyter Notebook and Excel. 
- Option to use commercial optimization solver like MOSEK or GUROBI for large scale problems.


## Documentation

Online documentation is available at [Documentation](https://riskfolio-lib.readthedocs.io/en/latest/).

The docs include a [tutorial](https://riskfolio-lib.readthedocs.io/en/latest/examples.html)
with examples that shows the capacities of Riskfolio-Lib.


## Dependencies

Riskfolio-Lib supports Python 3.7+.

Installation requires:
- [numpy](http://www.numpy.org/) >= 1.17.0
- [scipy](https://www.scipy.org/) >= 1.1.0
- [pandas](https://pandas.pydata.org/) >= 1.0.0
- [matplotlib](https://matplotlib.org/) >= 3.3.0
- [cvxpy](https://www.cvxpy.org/) >= 1.0.15
- [scikit-learn](https://scikit-learn.org/stable/) >= 1.0.0
- [statsmodels](https://www.statsmodels.org/) >= 0.10.1
- [arch](https://bashtage.github.io/arch/) >= 4.15
- [xlsxwriter](https://xlsxwriter.readthedocs.io) >= 1.3.7
- [networkx](https://networkx.org) >= 2.5.1
- [astropy](https://www.astropy.org) >= 4.3.1
- [pybind11[(https://pybind11.readthedocs.io/en/stable/) >= 2.10.1

## Installation

The latest stable release (and older versions) can be installed from PyPI:

    pip install riskfolio-lib

## Citing

If you use Riskfolio-Lib for published work, please use the following BibTeX entry:

```
@misc{riskfolio,
      author = {Dany Cajas},
      title = {Riskfolio-Lib (4.2.0)},
      year  = {2023},
      url   = {https://github.com/dcajasn/Riskfolio-Lib},
      }
```
 
## Development

Riskfolio-Lib development takes place on Github: https://github.com/dcajasn/Riskfolio-Lib


## Consulting Fees

Riskfolio-Lib is an open-source project, however due it's a project that is not financed for any institution, I started charging for consultancies that are not related to errors in source code. Our fees are as follows:

- $ 25 USD (United States Dollars) per question that doesn't require to check code.
- $ 50 USD to check a small size script or code (less than 200 lines of code). The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.
- $ 100 USD to check a medium size script or code (between 201 and 600 lines of code). The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.
- For large size script or code (more than 600 lines of code) the fee is variable depending on the size of the code. The fee of the solution depends on the complexity of the solution:
    - $ 50 USD for simple errors in scripts (modify less than 10 lines of code).
    - For most complex errors the fee depends on the complexity of the solution but the fee is $ 150 USD per hour.

**All consulting must be paid in advance**.

You can contact me through:

- __[LinkedIn](https://www.linkedin.com/in/dany-cajas/)__
- __[Gmail](dcajasn@gmail.com)__

You can pay using one of the following channels:

- __[Github Sponsorship](https://github.com/sponsors/dcajasn)__

- <a href='https://ko-fi.com/B0B833SXD' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=2' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

## RoadMap

The plan for this module is to add more functions that will be very useful
to asset managers.

- Add more functions based on suggestion of users.


%prep
%autosetup -n Riskfolio-Lib-4.2.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Riskfolio-Lib -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 4.2.0-1
- Package Spec generated