1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
|
%global _empty_manifest_terminate_build 0
Name: python-sagemaker-inference
Version: 1.9.2
Release: 1
Summary: Open source toolkit for helping create serving containers to run on Amazon SageMaker.
License: Apache License 2.0
URL: https://github.com/aws/sagemaker-inference-toolkit/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/af/02/63dbc51c108c709bd3b277bc74527214abfceb858f5c20f6edbb1ba7e6e6/sagemaker_inference-1.9.2.tar.gz
BuildArch: noarch
%description

# SageMaker Inference Toolkit
[](https://pypi.python.org/pypi/sagemaker-inference) [](https://pypi.python.org/pypi/sagemaker-inference) [](https://github.com/python/black)
Serve machine learning models within a Docker container using Amazon
SageMaker.
## :books: Background
[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service for data science and machine learning (ML) workflows.
You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.
Once you have a trained model, you can include it in a [Docker container](https://www.docker.com/resources/what-container) that runs your inference code.
A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the container is deployed.
Containerizing your model and code enables fast and reliable deployment of your model.
The **SageMaker Inference Toolkit** implements a model serving stack and can be easily added to any Docker container, making it [deployable to SageMaker](https://aws.amazon.com/sagemaker/deploy/).
This library's serving stack is built on [Multi Model Server](https://github.com/awslabs/multi-model-server), and it can serve your own models or those you trained on SageMaker using [machine learning frameworks with native SageMaker support](https://docs.aws.amazon.com/sagemaker/latest/dg/frameworks.html).
If you use a [prebuilt SageMaker Docker image for inference](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html), this library may already be included.
For more information, see the Amazon SageMaker Developer Guide sections on [building your own container with Multi Model Server](https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html) and [using your own models](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
## :hammer_and_wrench: Installation
To install this library in your Docker image, add the following line to your [Dockerfile](https://docs.docker.com/engine/reference/builder/):
``` dockerfile
RUN pip3 install multi-model-server sagemaker-inference
```
[Here is an example](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/multi_model_bring_your_own/container/Dockerfile) of a Dockerfile that installs SageMaker Inference Toolkit.
## :computer: Usage
### Implementation Steps
To use the SageMaker Inference Toolkit, you need to do the following:
1. Implement an inference handler, which is responsible for loading the model and providing input, predict, and output functions.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/default_pytorch_inference_handler.py) of an inference handler.)
``` python
from sagemaker_inference import content_types, decoder, default_inference_handler, encoder, errors
class DefaultPytorchInferenceHandler(default_inference_handler.DefaultInferenceHandler):
def default_model_fn(self, model_dir, context=None):
"""Loads a model. For PyTorch, a default function to load a model cannot be provided.
Users should provide customized model_fn() in script.
Args:
model_dir: a directory where model is saved.
context (obj): the request context (default: None).
Returns: A PyTorch model.
"""
raise NotImplementedError(textwrap.dedent("""
Please provide a model_fn implementation.
See documentation for model_fn at https://github.com/aws/sagemaker-python-sdk
"""))
def default_input_fn(self, input_data, content_type, context=None):
"""A default input_fn that can handle JSON, CSV and NPZ formats.
Args:
input_data: the request payload serialized in the content_type format
content_type: the request content_type
context (obj): the request context (default: None).
Returns: input_data deserialized into torch.FloatTensor or torch.cuda.FloatTensor depending if cuda is available.
"""
return decoder.decode(input_data, content_type)
def default_predict_fn(self, data, model, context=None):
"""A default predict_fn for PyTorch. Calls a model on data deserialized in input_fn.
Runs prediction on GPU if cuda is available.
Args:
data: input data (torch.Tensor) for prediction deserialized by input_fn
model: PyTorch model loaded in memory by model_fn
context (obj): the request context (default: None).
Returns: a prediction
"""
return model(input_data)
def default_output_fn(self, prediction, accept, context=None):
"""A default output_fn for PyTorch. Serializes predictions from predict_fn to JSON, CSV or NPY format.
Args:
prediction: a prediction result from predict_fn
accept: type which the output data needs to be serialized
context (obj): the request context (default: None).
Returns: output data serialized
"""
return encoder.encode(prediction, accept)
```
Note, passing context as an argument to the handler functions is optional. Customer can choose to omit context from the function declaration if it's not needed in the runtime. For example, the following handler function declarations will also work:
```
def default_model_fn(self, model_dir)
def default_input_fn(self, input_data, content_type)
def default_predict_fn(self, data, model)
def default_output_fn(self, prediction, accept)
```
2. Implement a handler service that is executed by the model server.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/handler_service.py) of a handler service.)
For more information on how to define your `HANDLER_SERVICE` file, see [the MMS custom service documentation](https://github.com/awslabs/multi-model-server/blob/master/docs/custom_service.md).
``` python
from sagemaker_inference.default_handler_service import DefaultHandlerService
from sagemaker_inference.transformer import Transformer
from sagemaker_pytorch_serving_container.default_inference_handler import DefaultPytorchInferenceHandler
class HandlerService(DefaultHandlerService):
"""Handler service that is executed by the model server.
Determines specific default inference handlers to use based on model being used.
This class extends ``DefaultHandlerService``, which define the following:
- The ``handle`` method is invoked for all incoming inference requests to the model server.
- The ``initialize`` method is invoked at model server start up.
Based on: https://github.com/awslabs/multi-model-server/blob/master/docs/custom_service.md
"""
def __init__(self):
transformer = Transformer(default_inference_handler=DefaultPytorchInferenceHandler())
super(HandlerService, self).__init__(transformer=transformer)
```
3. Implement a serving entrypoint, which starts the model server.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/serving.py) of a serving entrypoint.)
``` python
from sagemaker_inference import model_server
model_server.start_model_server(handler_service=HANDLER_SERVICE)
```
4. Define the location of the entrypoint in your Dockerfile.
``` dockerfile
ENTRYPOINT ["python", "/usr/local/bin/entrypoint.py"]
```
### Complete Example
[Here is a complete example](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/multi_model_bring_your_own) demonstrating usage of the SageMaker Inference Toolkit in your own container for deployment to a multi-model endpoint.
## :scroll: License
This library is licensed under the [Apache 2.0 License](http://aws.amazon.com/apache2.0/).
For more details, please take a look at the [LICENSE](https://github.com/aws-samples/sagemaker-inference-toolkit/blob/master/LICENSE) file.
## :handshake: Contributing
Contributions are welcome!
Please read our [contributing guidelines](https://github.com/aws/sagemaker-inference-toolkit/blob/master/CONTRIBUTING.md)
if you'd like to open an issue or submit a pull request.
%package -n python3-sagemaker-inference
Summary: Open source toolkit for helping create serving containers to run on Amazon SageMaker.
Provides: python-sagemaker-inference
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-sagemaker-inference

# SageMaker Inference Toolkit
[](https://pypi.python.org/pypi/sagemaker-inference) [](https://pypi.python.org/pypi/sagemaker-inference) [](https://github.com/python/black)
Serve machine learning models within a Docker container using Amazon
SageMaker.
## :books: Background
[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service for data science and machine learning (ML) workflows.
You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.
Once you have a trained model, you can include it in a [Docker container](https://www.docker.com/resources/what-container) that runs your inference code.
A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the container is deployed.
Containerizing your model and code enables fast and reliable deployment of your model.
The **SageMaker Inference Toolkit** implements a model serving stack and can be easily added to any Docker container, making it [deployable to SageMaker](https://aws.amazon.com/sagemaker/deploy/).
This library's serving stack is built on [Multi Model Server](https://github.com/awslabs/multi-model-server), and it can serve your own models or those you trained on SageMaker using [machine learning frameworks with native SageMaker support](https://docs.aws.amazon.com/sagemaker/latest/dg/frameworks.html).
If you use a [prebuilt SageMaker Docker image for inference](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html), this library may already be included.
For more information, see the Amazon SageMaker Developer Guide sections on [building your own container with Multi Model Server](https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html) and [using your own models](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
## :hammer_and_wrench: Installation
To install this library in your Docker image, add the following line to your [Dockerfile](https://docs.docker.com/engine/reference/builder/):
``` dockerfile
RUN pip3 install multi-model-server sagemaker-inference
```
[Here is an example](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/multi_model_bring_your_own/container/Dockerfile) of a Dockerfile that installs SageMaker Inference Toolkit.
## :computer: Usage
### Implementation Steps
To use the SageMaker Inference Toolkit, you need to do the following:
1. Implement an inference handler, which is responsible for loading the model and providing input, predict, and output functions.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/default_pytorch_inference_handler.py) of an inference handler.)
``` python
from sagemaker_inference import content_types, decoder, default_inference_handler, encoder, errors
class DefaultPytorchInferenceHandler(default_inference_handler.DefaultInferenceHandler):
def default_model_fn(self, model_dir, context=None):
"""Loads a model. For PyTorch, a default function to load a model cannot be provided.
Users should provide customized model_fn() in script.
Args:
model_dir: a directory where model is saved.
context (obj): the request context (default: None).
Returns: A PyTorch model.
"""
raise NotImplementedError(textwrap.dedent("""
Please provide a model_fn implementation.
See documentation for model_fn at https://github.com/aws/sagemaker-python-sdk
"""))
def default_input_fn(self, input_data, content_type, context=None):
"""A default input_fn that can handle JSON, CSV and NPZ formats.
Args:
input_data: the request payload serialized in the content_type format
content_type: the request content_type
context (obj): the request context (default: None).
Returns: input_data deserialized into torch.FloatTensor or torch.cuda.FloatTensor depending if cuda is available.
"""
return decoder.decode(input_data, content_type)
def default_predict_fn(self, data, model, context=None):
"""A default predict_fn for PyTorch. Calls a model on data deserialized in input_fn.
Runs prediction on GPU if cuda is available.
Args:
data: input data (torch.Tensor) for prediction deserialized by input_fn
model: PyTorch model loaded in memory by model_fn
context (obj): the request context (default: None).
Returns: a prediction
"""
return model(input_data)
def default_output_fn(self, prediction, accept, context=None):
"""A default output_fn for PyTorch. Serializes predictions from predict_fn to JSON, CSV or NPY format.
Args:
prediction: a prediction result from predict_fn
accept: type which the output data needs to be serialized
context (obj): the request context (default: None).
Returns: output data serialized
"""
return encoder.encode(prediction, accept)
```
Note, passing context as an argument to the handler functions is optional. Customer can choose to omit context from the function declaration if it's not needed in the runtime. For example, the following handler function declarations will also work:
```
def default_model_fn(self, model_dir)
def default_input_fn(self, input_data, content_type)
def default_predict_fn(self, data, model)
def default_output_fn(self, prediction, accept)
```
2. Implement a handler service that is executed by the model server.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/handler_service.py) of a handler service.)
For more information on how to define your `HANDLER_SERVICE` file, see [the MMS custom service documentation](https://github.com/awslabs/multi-model-server/blob/master/docs/custom_service.md).
``` python
from sagemaker_inference.default_handler_service import DefaultHandlerService
from sagemaker_inference.transformer import Transformer
from sagemaker_pytorch_serving_container.default_inference_handler import DefaultPytorchInferenceHandler
class HandlerService(DefaultHandlerService):
"""Handler service that is executed by the model server.
Determines specific default inference handlers to use based on model being used.
This class extends ``DefaultHandlerService``, which define the following:
- The ``handle`` method is invoked for all incoming inference requests to the model server.
- The ``initialize`` method is invoked at model server start up.
Based on: https://github.com/awslabs/multi-model-server/blob/master/docs/custom_service.md
"""
def __init__(self):
transformer = Transformer(default_inference_handler=DefaultPytorchInferenceHandler())
super(HandlerService, self).__init__(transformer=transformer)
```
3. Implement a serving entrypoint, which starts the model server.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/serving.py) of a serving entrypoint.)
``` python
from sagemaker_inference import model_server
model_server.start_model_server(handler_service=HANDLER_SERVICE)
```
4. Define the location of the entrypoint in your Dockerfile.
``` dockerfile
ENTRYPOINT ["python", "/usr/local/bin/entrypoint.py"]
```
### Complete Example
[Here is a complete example](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/multi_model_bring_your_own) demonstrating usage of the SageMaker Inference Toolkit in your own container for deployment to a multi-model endpoint.
## :scroll: License
This library is licensed under the [Apache 2.0 License](http://aws.amazon.com/apache2.0/).
For more details, please take a look at the [LICENSE](https://github.com/aws-samples/sagemaker-inference-toolkit/blob/master/LICENSE) file.
## :handshake: Contributing
Contributions are welcome!
Please read our [contributing guidelines](https://github.com/aws/sagemaker-inference-toolkit/blob/master/CONTRIBUTING.md)
if you'd like to open an issue or submit a pull request.
%package help
Summary: Development documents and examples for sagemaker-inference
Provides: python3-sagemaker-inference-doc
%description help

# SageMaker Inference Toolkit
[](https://pypi.python.org/pypi/sagemaker-inference) [](https://pypi.python.org/pypi/sagemaker-inference) [](https://github.com/python/black)
Serve machine learning models within a Docker container using Amazon
SageMaker.
## :books: Background
[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service for data science and machine learning (ML) workflows.
You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.
Once you have a trained model, you can include it in a [Docker container](https://www.docker.com/resources/what-container) that runs your inference code.
A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the container is deployed.
Containerizing your model and code enables fast and reliable deployment of your model.
The **SageMaker Inference Toolkit** implements a model serving stack and can be easily added to any Docker container, making it [deployable to SageMaker](https://aws.amazon.com/sagemaker/deploy/).
This library's serving stack is built on [Multi Model Server](https://github.com/awslabs/multi-model-server), and it can serve your own models or those you trained on SageMaker using [machine learning frameworks with native SageMaker support](https://docs.aws.amazon.com/sagemaker/latest/dg/frameworks.html).
If you use a [prebuilt SageMaker Docker image for inference](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html), this library may already be included.
For more information, see the Amazon SageMaker Developer Guide sections on [building your own container with Multi Model Server](https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html) and [using your own models](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
## :hammer_and_wrench: Installation
To install this library in your Docker image, add the following line to your [Dockerfile](https://docs.docker.com/engine/reference/builder/):
``` dockerfile
RUN pip3 install multi-model-server sagemaker-inference
```
[Here is an example](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/multi_model_bring_your_own/container/Dockerfile) of a Dockerfile that installs SageMaker Inference Toolkit.
## :computer: Usage
### Implementation Steps
To use the SageMaker Inference Toolkit, you need to do the following:
1. Implement an inference handler, which is responsible for loading the model and providing input, predict, and output functions.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/default_pytorch_inference_handler.py) of an inference handler.)
``` python
from sagemaker_inference import content_types, decoder, default_inference_handler, encoder, errors
class DefaultPytorchInferenceHandler(default_inference_handler.DefaultInferenceHandler):
def default_model_fn(self, model_dir, context=None):
"""Loads a model. For PyTorch, a default function to load a model cannot be provided.
Users should provide customized model_fn() in script.
Args:
model_dir: a directory where model is saved.
context (obj): the request context (default: None).
Returns: A PyTorch model.
"""
raise NotImplementedError(textwrap.dedent("""
Please provide a model_fn implementation.
See documentation for model_fn at https://github.com/aws/sagemaker-python-sdk
"""))
def default_input_fn(self, input_data, content_type, context=None):
"""A default input_fn that can handle JSON, CSV and NPZ formats.
Args:
input_data: the request payload serialized in the content_type format
content_type: the request content_type
context (obj): the request context (default: None).
Returns: input_data deserialized into torch.FloatTensor or torch.cuda.FloatTensor depending if cuda is available.
"""
return decoder.decode(input_data, content_type)
def default_predict_fn(self, data, model, context=None):
"""A default predict_fn for PyTorch. Calls a model on data deserialized in input_fn.
Runs prediction on GPU if cuda is available.
Args:
data: input data (torch.Tensor) for prediction deserialized by input_fn
model: PyTorch model loaded in memory by model_fn
context (obj): the request context (default: None).
Returns: a prediction
"""
return model(input_data)
def default_output_fn(self, prediction, accept, context=None):
"""A default output_fn for PyTorch. Serializes predictions from predict_fn to JSON, CSV or NPY format.
Args:
prediction: a prediction result from predict_fn
accept: type which the output data needs to be serialized
context (obj): the request context (default: None).
Returns: output data serialized
"""
return encoder.encode(prediction, accept)
```
Note, passing context as an argument to the handler functions is optional. Customer can choose to omit context from the function declaration if it's not needed in the runtime. For example, the following handler function declarations will also work:
```
def default_model_fn(self, model_dir)
def default_input_fn(self, input_data, content_type)
def default_predict_fn(self, data, model)
def default_output_fn(self, prediction, accept)
```
2. Implement a handler service that is executed by the model server.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/handler_service.py) of a handler service.)
For more information on how to define your `HANDLER_SERVICE` file, see [the MMS custom service documentation](https://github.com/awslabs/multi-model-server/blob/master/docs/custom_service.md).
``` python
from sagemaker_inference.default_handler_service import DefaultHandlerService
from sagemaker_inference.transformer import Transformer
from sagemaker_pytorch_serving_container.default_inference_handler import DefaultPytorchInferenceHandler
class HandlerService(DefaultHandlerService):
"""Handler service that is executed by the model server.
Determines specific default inference handlers to use based on model being used.
This class extends ``DefaultHandlerService``, which define the following:
- The ``handle`` method is invoked for all incoming inference requests to the model server.
- The ``initialize`` method is invoked at model server start up.
Based on: https://github.com/awslabs/multi-model-server/blob/master/docs/custom_service.md
"""
def __init__(self):
transformer = Transformer(default_inference_handler=DefaultPytorchInferenceHandler())
super(HandlerService, self).__init__(transformer=transformer)
```
3. Implement a serving entrypoint, which starts the model server.
([Here is an example](https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/serving.py) of a serving entrypoint.)
``` python
from sagemaker_inference import model_server
model_server.start_model_server(handler_service=HANDLER_SERVICE)
```
4. Define the location of the entrypoint in your Dockerfile.
``` dockerfile
ENTRYPOINT ["python", "/usr/local/bin/entrypoint.py"]
```
### Complete Example
[Here is a complete example](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/multi_model_bring_your_own) demonstrating usage of the SageMaker Inference Toolkit in your own container for deployment to a multi-model endpoint.
## :scroll: License
This library is licensed under the [Apache 2.0 License](http://aws.amazon.com/apache2.0/).
For more details, please take a look at the [LICENSE](https://github.com/aws-samples/sagemaker-inference-toolkit/blob/master/LICENSE) file.
## :handshake: Contributing
Contributions are welcome!
Please read our [contributing guidelines](https://github.com/aws/sagemaker-inference-toolkit/blob/master/CONTRIBUTING.md)
if you'd like to open an issue or submit a pull request.
%prep
%autosetup -n sagemaker-inference-1.9.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-sagemaker-inference -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.9.2-1
- Package Spec generated
|