1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
%global _empty_manifest_terminate_build 0
Name: python-sagemaker-training
Version: 4.4.10
Release: 1
Summary: Open source library for creating containers to run on Amazon SageMaker.
License: Apache License 2.0
URL: https://github.com/aws/sagemaker-training-toolkit/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6f/fa/0496339dc1a1f0ca0e7314efc2034cfd51a840c727fe5e4979ad4fcf4c3a/sagemaker_training-4.4.10.tar.gz
BuildArch: noarch
%description

# SageMaker Training Toolkit
[](https://pypi.python.org/pypi/sagemaker-training) [](https://pypi.python.org/pypi/sagemaker-training) [](https://github.com/python/black)
Train machine learning models within a Docker container using Amazon SageMaker.
## :books: Background
[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service for data science and machine learning (ML) workflows.
You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.
To train a model, you can include your training script and dependencies in a [Docker container](https://www.docker.com/resources/what-container) that runs your training code.
A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process.
The **SageMaker Training Toolkit** can be easily added to any Docker container, making it compatible with SageMaker for [training models](https://aws.amazon.com/sagemaker/train/).
If you use a [prebuilt SageMaker Docker image for training](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html), this library may already be included.
For more information, see the Amazon SageMaker Developer Guide sections on [using Docker containers for training](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
## :hammer_and_wrench: Installation
To install this library in your Docker image, add the following line to your [Dockerfile](https://docs.docker.com/engine/reference/builder/):
``` dockerfile
RUN pip3 install sagemaker-training
```
## :computer: Usage
The following are brief how-to guides.
For complete, working examples of custom training containers built with the SageMaker Training Toolkit, please see [the example notebooks](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/custom-training-containers).
### Create a Docker image and train a model
1. Write a training script (eg. `train.py`).
2. [Define a container with a Dockerfile](https://docs.docker.com/get-started/part2/#define-a-container-with-dockerfile) that includes the training script and any dependencies.
The training script must be located in the `/opt/ml/code` directory.
The environment variable `SAGEMAKER_PROGRAM` defines which file inside the `/opt/ml/code` directory to use as the training entry point.
When training starts, the interpreter executes the entry point defined by `SAGEMAKER_PROGRAM`.
Python and shell scripts are both supported.
``` docker
FROM yourbaseimage:tag
# install the SageMaker Training Toolkit
RUN pip3 install sagemaker-training
# copy the training script inside the container
COPY train.py /opt/ml/code/train.py
# define train.py as the script entry point
ENV SAGEMAKER_PROGRAM train.py
```
3. Build and tag the Docker image.
``` shell
docker build -t custom-training-container .
```
4. Use the Docker image to start a training job using the [SageMaker Python SDK](https://github.com/aws/sagemaker-python-sdk).
``` python
from sagemaker.estimator import Estimator
estimator = Estimator(image_name="custom-training-container",
role="SageMakerRole",
train_instance_count=1,
train_instance_type="local")
estimator.fit()
```
To train a model using the image on SageMaker, [push the image to ECR](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html) and start a SageMaker training job with the image URI.
### Pass arguments to the entry point using hyperparameters
Any hyperparameters provided by the training job are passed to the entry point as script arguments.
The SageMaker Python SDK uses this feature to pass special hyperparameters to the training job, including `sagemaker_program` and `sagemaker_submit_directory`.
The complete list of SageMaker hyperparameters is available [here](https://github.com/aws/sagemaker-training-toolkit/blob/master/src/sagemaker_training/params.py).
1. Implement an argument parser in the entry point script. For example, in a Python script:
``` python
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--learning-rate", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--communicator", type=str)
parser.add_argument("--frequency", type=int, default=20)
args = parser.parse_args()
...
```
2. Start a training job with hyperparameters.
``` python
{"HyperParameters": {"batch-size": 256, "learning-rate": 0.0001, "communicator": "pure_nccl"}}
```
### Read additional information using environment variables
An entry point often needs additional information not available in `hyperparameters`.
The SageMaker Training Toolkit writes this information as environment variables that are available from within the script.
For example, this training job includes the channels `training` and `testing`:
``` python
from sagemaker.pytorch import PyTorch
estimator = PyTorch(entry_point="train.py", ...)
estimator.fit({"training": "s3://bucket/path/to/training/data",
"testing": "s3://bucket/path/to/testing/data"})
```
The environment variables `SM_CHANNEL_TRAINING` and `SM_CHANNEL_TESTING` provide the paths to the channels:
``` python
import argparse
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser()
...
# reads input channels training and testing from the environment variables
parser.add_argument("--training", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--testing", type=str, default=os.environ["SM_CHANNEL_TESTING"])
args = parser.parse_args()
...
```
When training starts, SageMaker Training Toolkit will print all available environment variables. Please see the [reference on environment variables](https://github.com/aws/sagemaker-training-toolkit/blob/master/ENVIRONMENT_VARIABLES.md) for a full list of provided environment variables.
### Get information about the container environment
To get information about the container environment, initialize an `Environment` object.
`Environment` provides access to aspects of the environment relevant to training jobs, including hyperparameters, system characteristics, filesystem locations, environment variables and configuration settings.
It is a read-only snapshot of the container environment during training, and it doesn't contain any form of state.
``` python
from sagemaker_training import environment
env = environment.Environment()
# get the path of the channel "training" from the `inputdataconfig.json` file
training_dir = env.channel_input_dirs["training"]
# get a the hyperparameter "training_data_file" from `hyperparameters.json` file
file_name = env.hyperparameters["training_data_file"]
# get the folder where the model should be saved
model_dir = env.model_dir
# train the model
data = np.load(os.path.join(training_dir, file_name))
x_train, y_train = data["features"], keras.utils.to_categorical(data["labels"])
model = ResNet50(weights="imagenet")
...
model.fit(x_train, y_train)
#save the model to the model_dir at the end of training
model.save(os.path.join(model_dir, "saved_model"))
```
### Execute the entry point
To execute the entry point, call `entry_point.run()`.
``` python
from sagemaker_training import entry_point, environment
env = environment.Environment()
# read hyperparameters as script arguments
args = env.to_cmd_args()
# get the environment variables
env_vars = env.to_env_vars()
# execute the entry point
entry_point.run(uri=env.module_dir,
user_entry_point=env.user_entry_point,
args=args,
env_vars=env_vars)
```
If the entry point execution fails, `trainer.train()` will write the error message to `/opt/ml/output/failure`. Otherwise, it will write to the file `/opt/ml/success`.
## :scroll: License
This library is licensed under the [Apache 2.0 License](http://aws.amazon.com/apache2.0/).
For more details, please take a look at the [LICENSE](https://github.com/aws/sagemaker-training-toolkit/blob/master/LICENSE) file.
## :handshake: Contributing
Contributions are welcome!
Please read our [contributing guidelines](https://github.com/aws/sagemaker-training-toolkit/blob/master/CONTRIBUTING.md)
if you'd like to open an issue or submit a pull request.
%package -n python3-sagemaker-training
Summary: Open source library for creating containers to run on Amazon SageMaker.
Provides: python-sagemaker-training
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-sagemaker-training

# SageMaker Training Toolkit
[](https://pypi.python.org/pypi/sagemaker-training) [](https://pypi.python.org/pypi/sagemaker-training) [](https://github.com/python/black)
Train machine learning models within a Docker container using Amazon SageMaker.
## :books: Background
[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service for data science and machine learning (ML) workflows.
You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.
To train a model, you can include your training script and dependencies in a [Docker container](https://www.docker.com/resources/what-container) that runs your training code.
A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process.
The **SageMaker Training Toolkit** can be easily added to any Docker container, making it compatible with SageMaker for [training models](https://aws.amazon.com/sagemaker/train/).
If you use a [prebuilt SageMaker Docker image for training](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html), this library may already be included.
For more information, see the Amazon SageMaker Developer Guide sections on [using Docker containers for training](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
## :hammer_and_wrench: Installation
To install this library in your Docker image, add the following line to your [Dockerfile](https://docs.docker.com/engine/reference/builder/):
``` dockerfile
RUN pip3 install sagemaker-training
```
## :computer: Usage
The following are brief how-to guides.
For complete, working examples of custom training containers built with the SageMaker Training Toolkit, please see [the example notebooks](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/custom-training-containers).
### Create a Docker image and train a model
1. Write a training script (eg. `train.py`).
2. [Define a container with a Dockerfile](https://docs.docker.com/get-started/part2/#define-a-container-with-dockerfile) that includes the training script and any dependencies.
The training script must be located in the `/opt/ml/code` directory.
The environment variable `SAGEMAKER_PROGRAM` defines which file inside the `/opt/ml/code` directory to use as the training entry point.
When training starts, the interpreter executes the entry point defined by `SAGEMAKER_PROGRAM`.
Python and shell scripts are both supported.
``` docker
FROM yourbaseimage:tag
# install the SageMaker Training Toolkit
RUN pip3 install sagemaker-training
# copy the training script inside the container
COPY train.py /opt/ml/code/train.py
# define train.py as the script entry point
ENV SAGEMAKER_PROGRAM train.py
```
3. Build and tag the Docker image.
``` shell
docker build -t custom-training-container .
```
4. Use the Docker image to start a training job using the [SageMaker Python SDK](https://github.com/aws/sagemaker-python-sdk).
``` python
from sagemaker.estimator import Estimator
estimator = Estimator(image_name="custom-training-container",
role="SageMakerRole",
train_instance_count=1,
train_instance_type="local")
estimator.fit()
```
To train a model using the image on SageMaker, [push the image to ECR](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html) and start a SageMaker training job with the image URI.
### Pass arguments to the entry point using hyperparameters
Any hyperparameters provided by the training job are passed to the entry point as script arguments.
The SageMaker Python SDK uses this feature to pass special hyperparameters to the training job, including `sagemaker_program` and `sagemaker_submit_directory`.
The complete list of SageMaker hyperparameters is available [here](https://github.com/aws/sagemaker-training-toolkit/blob/master/src/sagemaker_training/params.py).
1. Implement an argument parser in the entry point script. For example, in a Python script:
``` python
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--learning-rate", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--communicator", type=str)
parser.add_argument("--frequency", type=int, default=20)
args = parser.parse_args()
...
```
2. Start a training job with hyperparameters.
``` python
{"HyperParameters": {"batch-size": 256, "learning-rate": 0.0001, "communicator": "pure_nccl"}}
```
### Read additional information using environment variables
An entry point often needs additional information not available in `hyperparameters`.
The SageMaker Training Toolkit writes this information as environment variables that are available from within the script.
For example, this training job includes the channels `training` and `testing`:
``` python
from sagemaker.pytorch import PyTorch
estimator = PyTorch(entry_point="train.py", ...)
estimator.fit({"training": "s3://bucket/path/to/training/data",
"testing": "s3://bucket/path/to/testing/data"})
```
The environment variables `SM_CHANNEL_TRAINING` and `SM_CHANNEL_TESTING` provide the paths to the channels:
``` python
import argparse
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser()
...
# reads input channels training and testing from the environment variables
parser.add_argument("--training", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--testing", type=str, default=os.environ["SM_CHANNEL_TESTING"])
args = parser.parse_args()
...
```
When training starts, SageMaker Training Toolkit will print all available environment variables. Please see the [reference on environment variables](https://github.com/aws/sagemaker-training-toolkit/blob/master/ENVIRONMENT_VARIABLES.md) for a full list of provided environment variables.
### Get information about the container environment
To get information about the container environment, initialize an `Environment` object.
`Environment` provides access to aspects of the environment relevant to training jobs, including hyperparameters, system characteristics, filesystem locations, environment variables and configuration settings.
It is a read-only snapshot of the container environment during training, and it doesn't contain any form of state.
``` python
from sagemaker_training import environment
env = environment.Environment()
# get the path of the channel "training" from the `inputdataconfig.json` file
training_dir = env.channel_input_dirs["training"]
# get a the hyperparameter "training_data_file" from `hyperparameters.json` file
file_name = env.hyperparameters["training_data_file"]
# get the folder where the model should be saved
model_dir = env.model_dir
# train the model
data = np.load(os.path.join(training_dir, file_name))
x_train, y_train = data["features"], keras.utils.to_categorical(data["labels"])
model = ResNet50(weights="imagenet")
...
model.fit(x_train, y_train)
#save the model to the model_dir at the end of training
model.save(os.path.join(model_dir, "saved_model"))
```
### Execute the entry point
To execute the entry point, call `entry_point.run()`.
``` python
from sagemaker_training import entry_point, environment
env = environment.Environment()
# read hyperparameters as script arguments
args = env.to_cmd_args()
# get the environment variables
env_vars = env.to_env_vars()
# execute the entry point
entry_point.run(uri=env.module_dir,
user_entry_point=env.user_entry_point,
args=args,
env_vars=env_vars)
```
If the entry point execution fails, `trainer.train()` will write the error message to `/opt/ml/output/failure`. Otherwise, it will write to the file `/opt/ml/success`.
## :scroll: License
This library is licensed under the [Apache 2.0 License](http://aws.amazon.com/apache2.0/).
For more details, please take a look at the [LICENSE](https://github.com/aws/sagemaker-training-toolkit/blob/master/LICENSE) file.
## :handshake: Contributing
Contributions are welcome!
Please read our [contributing guidelines](https://github.com/aws/sagemaker-training-toolkit/blob/master/CONTRIBUTING.md)
if you'd like to open an issue or submit a pull request.
%package help
Summary: Development documents and examples for sagemaker-training
Provides: python3-sagemaker-training-doc
%description help

# SageMaker Training Toolkit
[](https://pypi.python.org/pypi/sagemaker-training) [](https://pypi.python.org/pypi/sagemaker-training) [](https://github.com/python/black)
Train machine learning models within a Docker container using Amazon SageMaker.
## :books: Background
[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service for data science and machine learning (ML) workflows.
You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.
To train a model, you can include your training script and dependencies in a [Docker container](https://www.docker.com/resources/what-container) that runs your training code.
A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process.
The **SageMaker Training Toolkit** can be easily added to any Docker container, making it compatible with SageMaker for [training models](https://aws.amazon.com/sagemaker/train/).
If you use a [prebuilt SageMaker Docker image for training](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html), this library may already be included.
For more information, see the Amazon SageMaker Developer Guide sections on [using Docker containers for training](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
## :hammer_and_wrench: Installation
To install this library in your Docker image, add the following line to your [Dockerfile](https://docs.docker.com/engine/reference/builder/):
``` dockerfile
RUN pip3 install sagemaker-training
```
## :computer: Usage
The following are brief how-to guides.
For complete, working examples of custom training containers built with the SageMaker Training Toolkit, please see [the example notebooks](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/custom-training-containers).
### Create a Docker image and train a model
1. Write a training script (eg. `train.py`).
2. [Define a container with a Dockerfile](https://docs.docker.com/get-started/part2/#define-a-container-with-dockerfile) that includes the training script and any dependencies.
The training script must be located in the `/opt/ml/code` directory.
The environment variable `SAGEMAKER_PROGRAM` defines which file inside the `/opt/ml/code` directory to use as the training entry point.
When training starts, the interpreter executes the entry point defined by `SAGEMAKER_PROGRAM`.
Python and shell scripts are both supported.
``` docker
FROM yourbaseimage:tag
# install the SageMaker Training Toolkit
RUN pip3 install sagemaker-training
# copy the training script inside the container
COPY train.py /opt/ml/code/train.py
# define train.py as the script entry point
ENV SAGEMAKER_PROGRAM train.py
```
3. Build and tag the Docker image.
``` shell
docker build -t custom-training-container .
```
4. Use the Docker image to start a training job using the [SageMaker Python SDK](https://github.com/aws/sagemaker-python-sdk).
``` python
from sagemaker.estimator import Estimator
estimator = Estimator(image_name="custom-training-container",
role="SageMakerRole",
train_instance_count=1,
train_instance_type="local")
estimator.fit()
```
To train a model using the image on SageMaker, [push the image to ECR](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html) and start a SageMaker training job with the image URI.
### Pass arguments to the entry point using hyperparameters
Any hyperparameters provided by the training job are passed to the entry point as script arguments.
The SageMaker Python SDK uses this feature to pass special hyperparameters to the training job, including `sagemaker_program` and `sagemaker_submit_directory`.
The complete list of SageMaker hyperparameters is available [here](https://github.com/aws/sagemaker-training-toolkit/blob/master/src/sagemaker_training/params.py).
1. Implement an argument parser in the entry point script. For example, in a Python script:
``` python
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--learning-rate", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--communicator", type=str)
parser.add_argument("--frequency", type=int, default=20)
args = parser.parse_args()
...
```
2. Start a training job with hyperparameters.
``` python
{"HyperParameters": {"batch-size": 256, "learning-rate": 0.0001, "communicator": "pure_nccl"}}
```
### Read additional information using environment variables
An entry point often needs additional information not available in `hyperparameters`.
The SageMaker Training Toolkit writes this information as environment variables that are available from within the script.
For example, this training job includes the channels `training` and `testing`:
``` python
from sagemaker.pytorch import PyTorch
estimator = PyTorch(entry_point="train.py", ...)
estimator.fit({"training": "s3://bucket/path/to/training/data",
"testing": "s3://bucket/path/to/testing/data"})
```
The environment variables `SM_CHANNEL_TRAINING` and `SM_CHANNEL_TESTING` provide the paths to the channels:
``` python
import argparse
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser()
...
# reads input channels training and testing from the environment variables
parser.add_argument("--training", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--testing", type=str, default=os.environ["SM_CHANNEL_TESTING"])
args = parser.parse_args()
...
```
When training starts, SageMaker Training Toolkit will print all available environment variables. Please see the [reference on environment variables](https://github.com/aws/sagemaker-training-toolkit/blob/master/ENVIRONMENT_VARIABLES.md) for a full list of provided environment variables.
### Get information about the container environment
To get information about the container environment, initialize an `Environment` object.
`Environment` provides access to aspects of the environment relevant to training jobs, including hyperparameters, system characteristics, filesystem locations, environment variables and configuration settings.
It is a read-only snapshot of the container environment during training, and it doesn't contain any form of state.
``` python
from sagemaker_training import environment
env = environment.Environment()
# get the path of the channel "training" from the `inputdataconfig.json` file
training_dir = env.channel_input_dirs["training"]
# get a the hyperparameter "training_data_file" from `hyperparameters.json` file
file_name = env.hyperparameters["training_data_file"]
# get the folder where the model should be saved
model_dir = env.model_dir
# train the model
data = np.load(os.path.join(training_dir, file_name))
x_train, y_train = data["features"], keras.utils.to_categorical(data["labels"])
model = ResNet50(weights="imagenet")
...
model.fit(x_train, y_train)
#save the model to the model_dir at the end of training
model.save(os.path.join(model_dir, "saved_model"))
```
### Execute the entry point
To execute the entry point, call `entry_point.run()`.
``` python
from sagemaker_training import entry_point, environment
env = environment.Environment()
# read hyperparameters as script arguments
args = env.to_cmd_args()
# get the environment variables
env_vars = env.to_env_vars()
# execute the entry point
entry_point.run(uri=env.module_dir,
user_entry_point=env.user_entry_point,
args=args,
env_vars=env_vars)
```
If the entry point execution fails, `trainer.train()` will write the error message to `/opt/ml/output/failure`. Otherwise, it will write to the file `/opt/ml/success`.
## :scroll: License
This library is licensed under the [Apache 2.0 License](http://aws.amazon.com/apache2.0/).
For more details, please take a look at the [LICENSE](https://github.com/aws/sagemaker-training-toolkit/blob/master/LICENSE) file.
## :handshake: Contributing
Contributions are welcome!
Please read our [contributing guidelines](https://github.com/aws/sagemaker-training-toolkit/blob/master/CONTRIBUTING.md)
if you'd like to open an issue or submit a pull request.
%prep
%autosetup -n sagemaker-training-4.4.10
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-sagemaker-training -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 4.4.10-1
- Package Spec generated
|