summaryrefslogtreecommitdiff
path: root/python-sanpy.spec
blob: 6f9235d13235db7508dd8170d4b8077e99959fb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
%global _empty_manifest_terminate_build 0
Name:		python-sanpy
Version:	0.11.6
Release:	1
Summary:	Package for Santiment API access with python
License:	MIT
URL:		https://github.com/santiment/sanpy
Source0:	https://mirrors.aliyun.com/pypi/web/packages/ae/59/073aadc1791953312c1a383261a3c5d219bf901db0c567529976fdfdf7b2/sanpy-0.11.6.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-requests
Requires:	python3-iso8601
Requires:	python3-setuptools
Requires:	python3-numpy
Requires:	python3-matplotlib
Requires:	python3-scipy
Requires:	python3-mlfinlab

%description
[![PyPI version](https://badge.fury.io/py/sanpy.svg)](https://badge.fury.io/py/sanpy)
Python client for cryptocurrency data from [Santiment API](https://api.santiment.net/).
This library provides utilities for accessing the GraphQL Santiment API endpoint
and convert the result to pandas dataframe.
More documentation regarding the API and definitions of metrics can be found on [Santiment Academy]()
# Table of contents
- [sanpy](#sanpy)
- [Table of contents](#table-of-contents)
  - [Installation](#installation)
  - [Upgrade to latest version](#upgrade-to-latest-version)
  - [Install extra packages](#install-extra-packages)
  - [Restricted metrics](#restricted-metrics)
  - [Configuration](#configuration)
    - [Read the API key from the environment](#read-the-api-key-from-the-environment)
    - [Manually configure an API key](#manually-configure-an-api-key)
    - [How to obtain an API key](#how-to-obtain-an-api-key)
  - [Getting the data](#getting-the-data)
    - [Using the provided functions](#using-the-provided-functions)
    - [Execute an arbitrary GraphQL request](#execute-an-arbitrary-graphql-request)
  - [Execute SQL queries and get the result](#execute-sql-queries-and-get-the-result)
  - [Available metrics](#available-metrics)
  - [Available Metrics for Slug](#available-metrics-for-slug)
  - [Fetch timeseries metric](#fetch-timeseries-metric)
  - [Fetching metadata for a metric](#fetching-metadata-for-a-metric)
  - [Batching multiple queries](#batching-multiple-queries)
  - [Rate Limit Tools](#rate-limit-tools)
  - [Metric Complexity](#metric-complexity)
  - [Include Incomplete Data Flag](#include-incomplete-data-flag)
  - [Metric/Asset pair available cince](#metricasset-pair-available-cince)
  - [Transform the result](#transform-the-result)
  - [Available projects](#available-projects)
  - [Non-standard metrics](#non-standard-metrics)
    - [Other Price metrics](#other-price-metrics)
      - [Marketcap, Price USD, Price BTC and Trading Volume](#marketcap-price-usd-price-btc-and-trading-volume)
      - [Open, High, Close, Low Prices, Volume, Marketcap](#open-high-close-low-prices-volume-marketcap)
    - [Mining Pools Distribution](#mining-pools-distribution)
    - [Historical Balance](#historical-balance)
    - [Ethereum Top Transactions](#ethereum-top-transactions)
    - [Ethereum Spent Over Time](#ethereum-spent-over-time)
    - [Token Top Transactions](#token-top-transactions)
    - [Top Transfers](#top-transfers)
    - [Emerging Trends](#emerging-trends)
    - [Top Social Gainers Losers](#top-social-gainers-losers)
  - [Extras](#extras)
  - [Development](#development)
  - [Running tests](#running-tests)
  - [Running integration tests](#running-integration-tests)
## Installation
To install the latest [sanpy from PyPI](https://pypi.org/project/sanpy/):
```bash
pip install sanpy
```
## Upgrade to latest version
```bash
pip install --upgrade sanpy
```
## Install extra packages
There are few scripts under [extras](/san/extras) directory related to backtesting and event studies. To install their dependencies use:
```bash
pip install sanpy[extras]
```
## Restricted metrics
In order to access real-time data or historical data for some of the metrics,
you'll need to set the [API key](#configuration), generated from an account with
a paid API plan.
## Configuration
You can provide an API key which gives access to the restricted metrics in two different ways:
### Read the API key from the environment
During loading of the `san` module, if the `SANPY_APIKEY` exists, its content
is read and set as the API key.
```shell
export SANPY_APIKEY="my_apikey"
```
```python
import san
>>> san.ApiConfig.api_key
'my_apikey'
```
### Manually configure an API key
```python
import san
san.ApiConfig.api_key = "my_apikey"
```
### How to obtain an API key
To obtain an API key you should [log in to sanbase](https://app.santiment.net/login)
and go to the `Account` page - [https://app.santiment.net/account](https://app.santiment.net/account).
There is an `API Keys` section and a `Generate new api key` button.
## Getting the data
### Using the provided functions
The library provides the `get` and `get_many` functions that are used to fetch data.
`get` is used to fetch timeseries data for a single metric/asset pair.
`get_many` is used to fetch timeseries data for a single metric, but many assets. This is counted as 1 API call.
The first argument to the functions is the metric name.
The rest of the parameters are::
- `slug` - (for `get`) The project identificator, as seen in [the Available projects section](#available-projects)
- `slugs` - (for `get_many`) A list of projects' identificators, as seen in [the Available projects section](#available-projects)
- `selector` - Allow for more flexible selection of the target. Some metrics are
  computed on blockchain addresses, for others you can provide a list of slugs,
  labels, amount of top holders. etc.
- `from_date` - A date or datetime in ISO8601 format specifying the start of the queried period. Defaults to `datetime.utcnow() - 365 days` 
- `to_date` - A date or datetime in ISO86091 format specifying the end of the queried period. Defaults to `datetime.utcnow()`
- `interval` - The interval between the data points in the timeseries. Defaults to `'1d'`
  It is represented in two different ways:
  - a fixed range:  an integer followed by one of: `s`, `m`, `h`, `d` or `w`
  - a function, providing some semantic or a dynamic range: `toStartOfMonth`, `toStartOfDay`, `toStartOfWeek`, `toMonday`..
The returned result for time-series data is transformed into `pandas DataFrame` and is indexed by `datetime`.
For `get`, the value column is named `value`.
For `get_many`, there is one column per asset queried. The asset slugs are used for the column names.
For backwards compatibility, fetching the metric by providing `"metric/slug"` as
the first instead of using a separate `'slug'`/`'selector'` continues to work,
but it is not the recommended approach.
For non-metric related data like getting the list of available assets, the data
is fetched by providing a string in the format `query/argument` and additional
parameters.
The examples below contain some of the described scenarios.
Fetch metric by providing `metric` as first argument and `slug` as named parameter:
```python
import san
san.get(
  "price_usd",
  slug="bitcoin",
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value
2022-01-01 00:00:00+00:00  47686.811509
2022-01-02 00:00:00+00:00  47345.220564
2022-01-03 00:00:00+00:00  46458.116959
2022-01-04 00:00:00+00:00  45928.661063
2022-01-05 00:00:00+00:00  43569.003348
```
Fetch prices for multiple assets:
```python
import san
san.get_many(
  "price_usd",
  slugs=["bitcoin", "ethereum", "tether"],
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   bitcoin       ethereum     tether                                            
2022-01-01 00:00:00+00:00  47686.811509  3769.696916  1.000500
2022-01-02 00:00:00+00:00  47345.220564  3829.565045  1.000460
2022-01-03 00:00:00+00:00  46458.116959  3761.380274  1.000165
2022-01-04 00:00:00+00:00  45928.661063  3795.890130  1.000208
2022-01-05 00:00:00+00:00  43569.003348  3550.386882  1.000122
```
Fetch development activity of a specific Github organization:
```python
import san
san.get(
  "dev_activity",
  selector={"organization": "google"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                    value     
2022-01-01 00:00:00+00:00   176.0
2022-01-02 00:00:00+00:00   129.0
2022-01-03 00:00:00+00:00   562.0
2022-01-04 00:00:00+00:00  1381.0
2022-01-05 00:00:00+00:00  1334.0
```
Fetch a metric for a contract address, not a slug:
```python
import san
san.get(
  "contract_transactions_count",
  selector={"contractAddress": "0x00000000219ab540356cBB839Cbe05303d7705Fa"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value     
2022-01-01 00:00:00+00:00   90.0
2022-01-02 00:00:00+00:00  339.0
2022-01-03 00:00:00+00:00  486.0
2022-01-04 00:00:00+00:00  314.0
2022-01-05 00:00:00+00:00  328.0
```
Fetch top holders metric and specify the number of top holders to be counted:
```python
import san
san.get(
  "amount_in_top_holders",
  selector={"slug": "santiment", "holdersCount": 10},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value
2022-01-01 00:00:00+00:00  7.391186e+07
2022-01-02 00:00:00+00:00  7.391438e+07
2022-01-03 00:00:00+00:00  7.391984e+07
2022-01-04 00:00:00+00:00  7.391984e+07
2022-01-05 00:00:00+00:00  7.391984e+07
```
Fetch trade volume of a given DEX for a given slug
```python
import san
# This requires Santiment API PRO apikey configured
san.get(
  "total_trade_volume_by_dex",
  selector={"slug": "ethereum", "label": "decentralized_exchange", "owner": "UniswapV2"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                    value
2022-01-01 00:00:00+00:00   96882.176846
2022-01-02 00:00:00+00:00   85184.970249
2022-01-03 00:00:00+00:00  107489.846163
2022-01-04 00:00:00+00:00  105204.677503
2022-01-05 00:00:00+00:00  174178.848916
```
Fetch metric by providing `metric/slug` as first argument and no `slug` as named parameter:
```python
import san
san.get(
    "daily_active_addresses/bitcoin",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
```
datetime                   value      
2018-06-01 00:00:00+00:00  692508.0
2018-06-02 00:00:00+00:00  521887.0
2018-06-03 00:00:00+00:00  531464.0
2018-06-04 00:00:00+00:00  702902.0
2018-06-05 00:00:00+00:00  655695.0
```
Fetch non-timeseries data:
```python
import san
san.get("projects/all")
```
```
                name             slug ticker   totalSupply
0             0chain           0chain    ZCN     400000000
1                 0x               0x    ZRX    1000000000
2          0xBitcoin            0xbtc  0xBTC      20999984
```
### Execute an arbitrary GraphQL request
Some of the available queries in the [Santiment API](https://api.santiment.net) do not have a 
dedicated sanpy function. Alternatively, if the returned format needs to be parsed differently, this approach
can be used, too. They can be fetched by providing the raw GraphQL query.
Fetching data for many slugs at the same time. Note that this is also available as `san.get_many`
```python
import san
import pandas as pd
result = san.graphql.execute_gql("""
{
  getMetric(metric: "price_usd") {
    timeseriesDataPerSlug(
      selector: {slugs: ["ethereum", "bitcoin"]}
      from: "2022-05-05T00:00:00Z"
      to: "2022-05-08T00:00:00Z"
      interval: "1d") {
        datetime
        data{
          value
          slug
        }
    }
  }
}
""")
data = result['getMetric']['timeseriesDataPerSlug']
rows = []
for datetime_point in data:
    row = {'datetime': datetime_point['datetime']}
    for slug_data in datetime_point['data']:
        row[slug_data['slug']] = slug_data['value']
    rows.append(row)
df = pd.DataFrame(rows)
df.set_index('datetime', inplace=True)
```
```
datetime              bitcoin       ethereum                
2022-05-05T00:00:00Z  36575.142133  2749.213042
2022-05-06T00:00:00Z  36040.922350  2694.979684
2022-05-07T00:00:00Z  35501.954144  2636.092958
```
Fetching a specific set of fields for a project:
```python
import san
import pandas as pd
result = san.graphql.execute_gql("""{
  projectBySlug(slug: "santiment") {
    slug
    name
    ticker
    infrastructure
    mainContractAddress
    twitterLink
  }
}""")
pd.DataFrame(result["projectBySlug"], index=[0])
```
```
  infrastructure                         mainContractAddress       name       slug ticker                        twitterLink
0            ETH  0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098  Santiment  santiment    SAN  https://twitter.com/santimentfeed
```
## Execute SQL queries and get the result
One of the Santiment products is [Santiment Queries](https://academy.santiment.net/santiment-queries/). It allows you to execute SQL queries on a database hosted by Santiment. Explore the documentation in order to get familiar with the available data and how to write SQL queries.
In order to execute a query you need to provide your API key.
Executing a query and getting the result as a pandas DataFrame:
```python
import san
san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5")
```
```
   metric_id  asset_id                    dt  value           computed_at
0         10      1369  2015-07-17T00:00:00Z    0.0  2020-10-21T08:48:42Z
1         10      1369  2015-07-18T00:00:00Z    0.0  2020-10-21T08:48:42Z
2         10      1369  2015-07-19T00:00:00Z    0.0  2020-10-21T08:48:42Z
3         10      1369  2015-07-20T00:00:00Z    0.0  2020-10-21T08:48:42Z
4         10      1369  2015-07-21T00:00:00Z    0.0  2020-10-21T08:48:42Z
```
In order to change the index to one of the columns, provide the `set_index` parameter:
```python
import san
san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5", set_index="dt")
```
```
dt                    metric_id  asset_id  value           computed_at
2015-07-17T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-18T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-19T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-20T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-21T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
```
The queries can be parametrized. In the query the parameters are named parameters,
surrounded by two curly brackets `{{key}}`. The parameters is a dictionary. The query
can be a multiline string:
```python
san.execute_sql(query="""
  SELECT
    get_metric_name(metric_id) AS metric,
    get_asset_name(asset_id) AS asset,
    dt,
    argMax(value, computed_at)
  FROM daily_metrics_v2
  WHERE
    asset_id = get_asset_id({{slug}}) AND
    metric_id = get_metric_id({{metric}}) AND
    dt >= now() - INTERVAL {{last_n_days}} DAY
  GROUP BY dt, metric_id, asset_id
  ORDER BY dt ASC
""",
parameters={'slug': 'bitcoin', 'metric': 'daily_active_addresses', 'last_n_days': 7},
set_index="dt")
```
```
dt                                         metric   asset  value                     
2023-03-22T00:00:00Z  daily_active_addresses  bitcoin                    941446.0
2023-03-23T00:00:00Z  daily_active_addresses  bitcoin                    913215.0
2023-03-24T00:00:00Z  daily_active_addresses  bitcoin                    884271.0
2023-03-25T00:00:00Z  daily_active_addresses  bitcoin                    906851.0
2023-03-26T00:00:00Z  daily_active_addresses  bitcoin                    835596.0
2023-03-27T00:00:00Z  daily_active_addresses  bitcoin                   1052637.0
2023-03-28T00:00:00Z  daily_active_addresses  bitcoin                    311566.0
```
## Available metrics
Getting all of the metrics as a list is done using the following code:
```python
san.available_metrics()
```
## Available Metrics for Slug
Getting all of the metrics for a given slug is achieved with the following code:
```python
san.available_metrics_for_slug("santiment")
```
## Fetch timeseries metric
```python
import san
san.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
Using the defaults params (last 1 year of data with 1 day interval):
```python
san.get("daily_active_addresses", slug="santiment")
san.get("price_usd", slug="santiment")
```
## Fetching metadata for a metric
Fetching the metadata for an on-chain metric.
```python
san.metadata(
    "nvt",
    arr=["availableSlugs", "defaultAggregation", "humanReadableName", "isAccessible", "isRestricted", "restrictedFrom", "restrictedTo"]
)
```
Example result:
```python
{"availableSlugs": ["0chain", "0x", "0xbtc", "0xcert", "1sg", ...],
"defaultAggregation": "AVG", "humanReadableName": "NVT (Using Circulation)", "isAccessible": True, "isRestricted": True, "restrictedFrom": "2020-03-21T08:44:14Z", "restrictedTo": "2020-06-17T08:44:14Z"}
```
- `availableSlugs` - A list of all slugs available for this metric.
- `defaultAggregation` - If big interval are queried, all values that fall into
  this interval will be aggregated with this aggregation.
- `humanReadableName` - A name of the metric suitable for showing to users.
- `isAccessible` - `True` if the metric is accessible. If API key is configured, c
  hecks the API plan subscriptions. `False` if the metric is not accessible. For example
  `circulation_1d` requires `PRO` plan subscription in order to be accessible at
  all.
- `isRestricted` - `True` if time restrictions apply to the metric and your
  current plan (`Free` if no API key is configured). Check `restrictedFrom` and
  `restrictedTo`.
- `restrictedFrom` - The first datetime available of that metric for your current plan.
- `restrictedTo` - The last datetime available of that metric and your current plan.
## Batching multiple queries
Multiple queries can be executed in a batch to speed up the performance.
There are two batch classes provided - `Batch` and `AsyncBatch`.
> Note: Batching improves the performance and the developer experience, but every
> query put inside the batch is still counted as one separate API call.
> To fetch a metric for multiple assets at a time take a look at `san.get_many`
- `AsyncBatch` is the recommended batch class. It executes all the queries in
  separate HTTP requests. The benefit of using `AsyncBatch` over looping and
  executing every API call is that the queries can be executed concurrently. 
  Putting multiple API calls in separate HTTP calls also allows to fetch more
  data, otherwise you might run into [Complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) issues. 
  The concurrency is controlled by the `max_workers` optional parameter to the
  `execute` function. By default the `max_workers` value is 10.
  It also supports `get_many` function to fetch data for many assets.
- `Batch` combines all the provided queries in a single GraphQL document and
  executes them in a single HTTP request. This batching technique should be used
  when lightweight queries that don't fetch a lot of data are used. The reason is
  that the [complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) of each query
  is accumulated and the batch can be rejected.
Note: If you have been using `Batch()` and want to switch to the newer `AsyncBatch()` you only need to
change the batch initialization. The functions for adding queries and executing the batch, as well as the
format of the response, are the same.
```python
from san import Batch
batch = Batch()
batch.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
batch.get(
    "transaction_volume",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
[daa, trx_volume] = batch.execute()
```
```python
from san import AsyncBatch
batch = AsyncBatch()
batch.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
batch.get_many(
    "daily_active_addresses",
    slugs=["bitcoin", "ethereum"],
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
[daa, daa_many] = batch.execute(max_workers=10)
```
## Rate Limit Tools
There are two functions, which can help you in handling the rate limits:
* ``is_rate_limit_exception`` - Returns whether the exception caught is because of rate limitation
* ``rate_limit_time_left`` - Returns the time left before the rate limit expires
* ``api_calls_made`` - Returns the API calls for each day in which it was used
* ``api_calls_remaining`` - Returns the API calls remaining for the month, hour and minute
Example:
```python
import time
import san
try:
  san.get(
    "price_usd",
    slug="santiment",
    from_date="utc_now-30d",
    to_date="utc_now",
    interval="1d"
  )
except Exception as e:
  if san.is_rate_limit_exception(e):
    rate_limit_seconds = san.rate_limit_time_left(e)
    print(f"Will sleep for {rate_limit_seconds}")
    time.sleep(rate_limit_seconds)
calls_by_day = san.api_calls_made()
calls_remaining = san.api_calls_remaining()
```
## Metric Complexity
Fetch the complexity of a metric. The complexity depends on the from/to/interval
parameters, as well as the metric and the subscription plan. A request might
have a maximum complexity of 50000. If a request has a higher complexity there
are a few ways to solve the issue:
- Break down the request into multiple requests with smaller from-to ranges.
- Upgrade to a higher subscription plan.
More about the complexity can be found on [Santiment Academy]()
```python
san.metric_complexity(
    metric="price_usd",
    from_date="2020-01-01",
    to_date="2020-02-20",
    interval="1d"
)
```
## Include Incomplete Data Flag
Daily metrics have one value per day. For the current day, the latest computed
value will not include a full day of data. For example, computing
`daily_active_addresses` at 08:00 includes data for one third of the day. To
reduce confusion, the current day value for metrics that have this behaviour is
excluded. To force fetching the current day value, the `includeIncompleteData`
flag must be used.
```python
san.get(
  "daily_active_addresses/bitcoin",
  from_date="utc_now-3d",
  to_date="utc_now",
  interval="1d",
  include_incomplete_data=True
)
```
## Metric/Asset pair available cince
Fetch the first datetime for which a metric is available for a given slug.
```python
san.available_metric_for_slug_since(metric="daily_active_addresses", slug="santiment")
```
## Transform the result
Example usage:
```python
san.get(
  "price_usd",
  slug="santiment",
  from_date="2020-06-01",
  to_date="2021-06-05",
  interval="1d",
  transform={"type": "moving_average", "moving_average_base": 100},
  aggregation="LAST"
)
```
Where the parameters, that are not mentioned, are optional:
`transform` - Apply a transformation on the data. The supported transformations are:
- "moving_average" - Replace every value V<sub>i</sub> with the average of the last "moving_average_base" values.
- "consecutive_differences" - Replace every value V<sub>i</sub> with the value V<sub>i</sub> - V<sub>i-1</sub> where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
- "percent_change" - Replace every value V<sub>i</sub> with the percent change of V<sub>i-1</sub> and V<sub>i</sub> ( (V<sub>i</sub> / V<sub>i-1</sub> - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
`aggregation` - the aggregation which is used for the query results.
## Available projects
Returns a DataFrame with all the projects available in the Santiment API. Not all
metrics will be available for each of the projects.
`slug` is the unique identifier of a project, used in the metrics fetching.
```python
san.get("projects/all")
```
Example result:
```
                 name             slug ticker   totalSupply
0              0chain           0chain    ZCN     400000000
1                  0x               0x    ZRX    1000000000
2           0xBitcoin            0xbtc  0xBTC      20999984
3     0xcert Protocol           0xcert    ZXC     500000000
4              1World           1world    1WO      37219453
5        AB-Chain RTB     ab-chain-rtb    RTB      27857813
6             Abulaba          abulaba    AAA     397000000
7                 AC3              ac3    AC3    80235326.0
```
## Non-standard metrics
Here is a list of metrics that are not part of the returned list of metrics found above.
This is due to having different response format and semantics.
### Other Price metrics
#### Marketcap, Price USD, Price BTC and Trading Volume
```python
san.get(
    "prices",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
#### Open, High, Close, Low Prices, Volume, Marketcap
Note: this query cannot be batched!
```python
san.get(
    "ohlcv",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
Example result:
```python
datetime                        openPriceUsd  closePriceUsd  highPriceUsd  lowPriceUsd   volume  marketcap
2018-06-01 00:00:00+00:00       1.24380        1.27668       1.26599       1.19099       852857  7.736268e+07
2018-06-02 00:00:00+00:00       1.26136        1.30779       1.27612       1.20958      1242520  7.864724e+07
2018-06-03 00:00:00+00:00       1.28270        1.28357       1.24625       1.21872      1032910  7.844339e+07
2018-06-04 00:00:00+00:00       1.23276        1.24910       1.18528       1.18010       617451  7.604326e+07
```
### Mining Pools Distribution
Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported.
[Premium metric](#premium-metrics)
```python
san.get(
    "mining_pools_distribution",
    slug="ethereum",
    from_date="2019-06-01",
    to_date="2019-06-05",
    interval="1d"
)
```
Example result:
```
datetime                      other     top10      top3
2019-06-01 00:00:00+00:00  0.129237  0.249906  0.620857
2019-06-02 00:00:00+00:00  0.127432  0.251903  0.620666
2019-06-03 00:00:00+00:00  0.122058  0.249603  0.628339
2019-06-04 00:00:00+00:00  0.127726  0.254982  0.617293
2019-06-05 00:00:00+00:00  0.120436  0.265842  0.613722
```
### Historical Balance
Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval.
```python
san.get(
    "historical_balance",
    slug="santiment",
    address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2",
    from_date="2019-04-18",
    to_date="2019-04-23",
    interval="1d"
)
```
Example result:
```
datetime                     balance
2019-04-18 00:00:00+00:00  382338.33
2019-04-19 00:00:00+00:00  382338.33
2019-04-20 00:00:00+00:00  382338.33
2019-04-21 00:00:00+00:00  215664.33
2019-04-22 00:00:00+00:00  215664.33
```
### Ethereum Top Transactions
Top ETH transactions for project's team wallets.
Available transaction types:
- ALL
- IN
- OUT
```python
san.get(
    "eth_top_transactions",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-30",
    limit=5,
    transaction_type="ALL"
)
```
Example result:
**The result is shortened for convenience**
```
datetime                           fromAddress  fromAddressInExchange           toAddress  toAddressInExchange              trxHash      trxValue
2019-04-29 21:33:31+00:00  0xe76fe52a251c8f...                  False  0x45d6275d9496b...                False  0x776cd57382456a...        100.00
2019-04-29 21:21:18+00:00  0xe76fe52a251c8f...                  False  0x468bdccdc334f...                False  0x848414fb5c382f...         40.95
2019-04-19 14:14:52+00:00  0x1f3df0b8390bb8...                  False  0xd69bc0585e05e...                False  0x590512e1f1fbcf...         19.48
2019-04-19 14:09:58+00:00  0x1f3df0b8390bb8...                  False  0x723fb5c14eaff...                False  0x78e0720b9e72d1...         15.15
```
### Ethereum Spent Over Time
ETH spent for each interval from the project's team wallet and time period
```python
san.get(
    "eth_spent_over_time",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-23",
    interval="1d"
)
```
Example result:
```
datetime                    ethSpent
2019-04-18 00:00:00+00:00   0.000000
2019-04-19 00:00:00+00:00  34.630284
2019-04-20 00:00:00+00:00   0.000000
2019-04-21 00:00:00+00:00   0.000158
2019-04-22 00:00:00+00:00   0.000000
```
### Token Top Transactions
Top transactions for the token of a given project
```python
san.get(
    "token_top_transactions",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-30",
    limit=5
)
```
Example result:
**The result is shortened for convenience**
```
datetime                           fromAddress  fromAddressInExchange           toAddress  toAddressInExchange              trxHash      trxValue
2019-04-21 13:51:59+00:00  0x1f3df0b8390bb8...                  False  0x5eaae5e949952...                False  0xdbced935b09dd0...  166674.00000
2019-04-28 07:43:38+00:00  0x0a920bfdf7f977...                  False  0x868074aab18ea...                False  0x5f2214d34bcdc3...   33181.82279
2019-04-28 07:53:32+00:00  0x868074aab18ea3...                  False  0x876eabf441b2e...                 True  0x90bd286da38a2b...   33181.82279
2019-04-26 14:38:45+00:00  0x876eabf441b2ee...                   True  0x76af586d041d6...                False  0xe45b86f415e930...   28999.64023
2019-04-30 15:17:28+00:00  0x876eabf441b2ee...                   True  0x1f4a90043cf2d...                False  0xc85892b9ef8c64...   20544.42975
```
### Top Transfers
Top transfers for the token of a given project, ``address`` and ``transaction_type`` arguments can be added as well, in the form of a key-value pair. The ``transaction_type`` parameter can have one of these three values: ``ALL``, ``OUT``, ``IN``.
```python
san.get(
    "top_transfers",
    slug="santiment",
    from_date="utc_now-30d",
    to_date="utc_now",
)
```
**The result is shortened for convenience**
Example result:
```
                          fromAddress   toAddress     trxHash       trxValue
datetime                                                                                                                                                                                                                          
2021-06-17 00:16:26+00:00  0xa48df...  0x876ea...  0x62a56...  136114.069733
2021-06-17 00:10:05+00:00  0xbd3c2...  0x876ea...  0x732a5...  117339.779890
2021-06-19 21:36:03+00:00  0x59646...  0x0d45b...  0x5de31...  112336.882707
```
```python
san.get(
    "top_transfers",
    slug="santiment",
    address="0x26e068650ae54b6c1b149e1b926634b07e137b9f",
    transaction_type="ALL",
    from_date="utc_now-30d",
    to_date="utc_now",
)
```
Example result:
```
                          fromAddress  toAddress    trxHash   trxValue
datetime                                                                                                                                                                                        
2021-06-13 09:14:01+00:00  0x26e06...  0xfd3d...  0x4af6...  69854.528
2021-06-13 09:13:01+00:00  0x876ea...  0x26e0...  0x18c1...  69854.528
2021-06-14 08:54:52+00:00  0x876ea...  0x26e0...  0xdceb...  59920.591
```
### Emerging Trends
Emerging trends for a given period of time. 
```python
san.get(
    "emerging_trends",
    from_date="2019-07-01",
    to_date="2019-07-02",
    interval="1d",
    size=5
)
```
Example result:
```
datetime                        score    word
2019-07-01 00:00:00+00:00  375.160034    lnbc
2019-07-01 00:00:00+00:00  355.323281    dent
2019-07-01 00:00:00+00:00  268.653820    link
2019-07-01 00:00:00+00:00  231.721809  shorts
2019-07-01 00:00:00+00:00  206.812798     btt
2019-07-02 00:00:00+00:00  209.343752  bounce
2019-07-02 00:00:00+00:00  135.412811    vidt
2019-07-02 00:00:00+00:00  116.842801     bat
2019-07-02 00:00:00+00:00   98.517600  bottom
2019-07-02 00:00:00+00:00   89.309975   haiku
```
### Top Social Gainers Losers
Top social gainers/losers returns the social volume changes for crypto projects.
```python
san.get(
    "top_social_gainers_losers",
    from_date="2019-07-18",
    to_date="2019-07-30",
    size=5,
    time_window="2d",
    status="ALL"
)
```
Example result:
**The result is shortened for convenience**
```
datetime                              slug     change    status
2019-07-28 01:00:00+00:00     libra-credit  21.000000    GAINER
2019-07-28 01:00:00+00:00             aeon  -1.000000     LOSER
2019-07-28 01:00:00+00:00    thunder-token   5.000000  NEWCOMER
2019-07-28 02:00:00+00:00     libra-credit  43.000000    GAINER
2019-07-30 07:00:00+00:00            storj  12.000000  NEWCOMER
2019-07-30 11:00:00+00:00            storj  21.000000    GAINER
2019-07-30 11:00:00+00:00            aergo  -1.000000     LOSER
2019-07-30 11:00:00+00:00            litex   8.000000  NEWCOMER
```
## Extras
Take a look at the [examples](/examples/extras) folder.
## Development
It is recommended to use [pipenv](https://github.com/pypa/pipenv) for managing your local environment.
Setup project:
```bash
pipenv install
```
Install main dependencies:
```bash
pipenv run pip install -e .
```
Install extra dependencies:
```bash
pipenv run pip install -e '.[extras]'
```
## Running tests
```bash
python setup.py test
```
## Running integration tests
```bash
python setup.py nosetests -a integration
```

%package -n python3-sanpy
Summary:	Package for Santiment API access with python
Provides:	python-sanpy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sanpy
[![PyPI version](https://badge.fury.io/py/sanpy.svg)](https://badge.fury.io/py/sanpy)
Python client for cryptocurrency data from [Santiment API](https://api.santiment.net/).
This library provides utilities for accessing the GraphQL Santiment API endpoint
and convert the result to pandas dataframe.
More documentation regarding the API and definitions of metrics can be found on [Santiment Academy]()
# Table of contents
- [sanpy](#sanpy)
- [Table of contents](#table-of-contents)
  - [Installation](#installation)
  - [Upgrade to latest version](#upgrade-to-latest-version)
  - [Install extra packages](#install-extra-packages)
  - [Restricted metrics](#restricted-metrics)
  - [Configuration](#configuration)
    - [Read the API key from the environment](#read-the-api-key-from-the-environment)
    - [Manually configure an API key](#manually-configure-an-api-key)
    - [How to obtain an API key](#how-to-obtain-an-api-key)
  - [Getting the data](#getting-the-data)
    - [Using the provided functions](#using-the-provided-functions)
    - [Execute an arbitrary GraphQL request](#execute-an-arbitrary-graphql-request)
  - [Execute SQL queries and get the result](#execute-sql-queries-and-get-the-result)
  - [Available metrics](#available-metrics)
  - [Available Metrics for Slug](#available-metrics-for-slug)
  - [Fetch timeseries metric](#fetch-timeseries-metric)
  - [Fetching metadata for a metric](#fetching-metadata-for-a-metric)
  - [Batching multiple queries](#batching-multiple-queries)
  - [Rate Limit Tools](#rate-limit-tools)
  - [Metric Complexity](#metric-complexity)
  - [Include Incomplete Data Flag](#include-incomplete-data-flag)
  - [Metric/Asset pair available cince](#metricasset-pair-available-cince)
  - [Transform the result](#transform-the-result)
  - [Available projects](#available-projects)
  - [Non-standard metrics](#non-standard-metrics)
    - [Other Price metrics](#other-price-metrics)
      - [Marketcap, Price USD, Price BTC and Trading Volume](#marketcap-price-usd-price-btc-and-trading-volume)
      - [Open, High, Close, Low Prices, Volume, Marketcap](#open-high-close-low-prices-volume-marketcap)
    - [Mining Pools Distribution](#mining-pools-distribution)
    - [Historical Balance](#historical-balance)
    - [Ethereum Top Transactions](#ethereum-top-transactions)
    - [Ethereum Spent Over Time](#ethereum-spent-over-time)
    - [Token Top Transactions](#token-top-transactions)
    - [Top Transfers](#top-transfers)
    - [Emerging Trends](#emerging-trends)
    - [Top Social Gainers Losers](#top-social-gainers-losers)
  - [Extras](#extras)
  - [Development](#development)
  - [Running tests](#running-tests)
  - [Running integration tests](#running-integration-tests)
## Installation
To install the latest [sanpy from PyPI](https://pypi.org/project/sanpy/):
```bash
pip install sanpy
```
## Upgrade to latest version
```bash
pip install --upgrade sanpy
```
## Install extra packages
There are few scripts under [extras](/san/extras) directory related to backtesting and event studies. To install their dependencies use:
```bash
pip install sanpy[extras]
```
## Restricted metrics
In order to access real-time data or historical data for some of the metrics,
you'll need to set the [API key](#configuration), generated from an account with
a paid API plan.
## Configuration
You can provide an API key which gives access to the restricted metrics in two different ways:
### Read the API key from the environment
During loading of the `san` module, if the `SANPY_APIKEY` exists, its content
is read and set as the API key.
```shell
export SANPY_APIKEY="my_apikey"
```
```python
import san
>>> san.ApiConfig.api_key
'my_apikey'
```
### Manually configure an API key
```python
import san
san.ApiConfig.api_key = "my_apikey"
```
### How to obtain an API key
To obtain an API key you should [log in to sanbase](https://app.santiment.net/login)
and go to the `Account` page - [https://app.santiment.net/account](https://app.santiment.net/account).
There is an `API Keys` section and a `Generate new api key` button.
## Getting the data
### Using the provided functions
The library provides the `get` and `get_many` functions that are used to fetch data.
`get` is used to fetch timeseries data for a single metric/asset pair.
`get_many` is used to fetch timeseries data for a single metric, but many assets. This is counted as 1 API call.
The first argument to the functions is the metric name.
The rest of the parameters are::
- `slug` - (for `get`) The project identificator, as seen in [the Available projects section](#available-projects)
- `slugs` - (for `get_many`) A list of projects' identificators, as seen in [the Available projects section](#available-projects)
- `selector` - Allow for more flexible selection of the target. Some metrics are
  computed on blockchain addresses, for others you can provide a list of slugs,
  labels, amount of top holders. etc.
- `from_date` - A date or datetime in ISO8601 format specifying the start of the queried period. Defaults to `datetime.utcnow() - 365 days` 
- `to_date` - A date or datetime in ISO86091 format specifying the end of the queried period. Defaults to `datetime.utcnow()`
- `interval` - The interval between the data points in the timeseries. Defaults to `'1d'`
  It is represented in two different ways:
  - a fixed range:  an integer followed by one of: `s`, `m`, `h`, `d` or `w`
  - a function, providing some semantic or a dynamic range: `toStartOfMonth`, `toStartOfDay`, `toStartOfWeek`, `toMonday`..
The returned result for time-series data is transformed into `pandas DataFrame` and is indexed by `datetime`.
For `get`, the value column is named `value`.
For `get_many`, there is one column per asset queried. The asset slugs are used for the column names.
For backwards compatibility, fetching the metric by providing `"metric/slug"` as
the first instead of using a separate `'slug'`/`'selector'` continues to work,
but it is not the recommended approach.
For non-metric related data like getting the list of available assets, the data
is fetched by providing a string in the format `query/argument` and additional
parameters.
The examples below contain some of the described scenarios.
Fetch metric by providing `metric` as first argument and `slug` as named parameter:
```python
import san
san.get(
  "price_usd",
  slug="bitcoin",
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value
2022-01-01 00:00:00+00:00  47686.811509
2022-01-02 00:00:00+00:00  47345.220564
2022-01-03 00:00:00+00:00  46458.116959
2022-01-04 00:00:00+00:00  45928.661063
2022-01-05 00:00:00+00:00  43569.003348
```
Fetch prices for multiple assets:
```python
import san
san.get_many(
  "price_usd",
  slugs=["bitcoin", "ethereum", "tether"],
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   bitcoin       ethereum     tether                                            
2022-01-01 00:00:00+00:00  47686.811509  3769.696916  1.000500
2022-01-02 00:00:00+00:00  47345.220564  3829.565045  1.000460
2022-01-03 00:00:00+00:00  46458.116959  3761.380274  1.000165
2022-01-04 00:00:00+00:00  45928.661063  3795.890130  1.000208
2022-01-05 00:00:00+00:00  43569.003348  3550.386882  1.000122
```
Fetch development activity of a specific Github organization:
```python
import san
san.get(
  "dev_activity",
  selector={"organization": "google"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                    value     
2022-01-01 00:00:00+00:00   176.0
2022-01-02 00:00:00+00:00   129.0
2022-01-03 00:00:00+00:00   562.0
2022-01-04 00:00:00+00:00  1381.0
2022-01-05 00:00:00+00:00  1334.0
```
Fetch a metric for a contract address, not a slug:
```python
import san
san.get(
  "contract_transactions_count",
  selector={"contractAddress": "0x00000000219ab540356cBB839Cbe05303d7705Fa"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value     
2022-01-01 00:00:00+00:00   90.0
2022-01-02 00:00:00+00:00  339.0
2022-01-03 00:00:00+00:00  486.0
2022-01-04 00:00:00+00:00  314.0
2022-01-05 00:00:00+00:00  328.0
```
Fetch top holders metric and specify the number of top holders to be counted:
```python
import san
san.get(
  "amount_in_top_holders",
  selector={"slug": "santiment", "holdersCount": 10},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value
2022-01-01 00:00:00+00:00  7.391186e+07
2022-01-02 00:00:00+00:00  7.391438e+07
2022-01-03 00:00:00+00:00  7.391984e+07
2022-01-04 00:00:00+00:00  7.391984e+07
2022-01-05 00:00:00+00:00  7.391984e+07
```
Fetch trade volume of a given DEX for a given slug
```python
import san
# This requires Santiment API PRO apikey configured
san.get(
  "total_trade_volume_by_dex",
  selector={"slug": "ethereum", "label": "decentralized_exchange", "owner": "UniswapV2"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                    value
2022-01-01 00:00:00+00:00   96882.176846
2022-01-02 00:00:00+00:00   85184.970249
2022-01-03 00:00:00+00:00  107489.846163
2022-01-04 00:00:00+00:00  105204.677503
2022-01-05 00:00:00+00:00  174178.848916
```
Fetch metric by providing `metric/slug` as first argument and no `slug` as named parameter:
```python
import san
san.get(
    "daily_active_addresses/bitcoin",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
```
datetime                   value      
2018-06-01 00:00:00+00:00  692508.0
2018-06-02 00:00:00+00:00  521887.0
2018-06-03 00:00:00+00:00  531464.0
2018-06-04 00:00:00+00:00  702902.0
2018-06-05 00:00:00+00:00  655695.0
```
Fetch non-timeseries data:
```python
import san
san.get("projects/all")
```
```
                name             slug ticker   totalSupply
0             0chain           0chain    ZCN     400000000
1                 0x               0x    ZRX    1000000000
2          0xBitcoin            0xbtc  0xBTC      20999984
```
### Execute an arbitrary GraphQL request
Some of the available queries in the [Santiment API](https://api.santiment.net) do not have a 
dedicated sanpy function. Alternatively, if the returned format needs to be parsed differently, this approach
can be used, too. They can be fetched by providing the raw GraphQL query.
Fetching data for many slugs at the same time. Note that this is also available as `san.get_many`
```python
import san
import pandas as pd
result = san.graphql.execute_gql("""
{
  getMetric(metric: "price_usd") {
    timeseriesDataPerSlug(
      selector: {slugs: ["ethereum", "bitcoin"]}
      from: "2022-05-05T00:00:00Z"
      to: "2022-05-08T00:00:00Z"
      interval: "1d") {
        datetime
        data{
          value
          slug
        }
    }
  }
}
""")
data = result['getMetric']['timeseriesDataPerSlug']
rows = []
for datetime_point in data:
    row = {'datetime': datetime_point['datetime']}
    for slug_data in datetime_point['data']:
        row[slug_data['slug']] = slug_data['value']
    rows.append(row)
df = pd.DataFrame(rows)
df.set_index('datetime', inplace=True)
```
```
datetime              bitcoin       ethereum                
2022-05-05T00:00:00Z  36575.142133  2749.213042
2022-05-06T00:00:00Z  36040.922350  2694.979684
2022-05-07T00:00:00Z  35501.954144  2636.092958
```
Fetching a specific set of fields for a project:
```python
import san
import pandas as pd
result = san.graphql.execute_gql("""{
  projectBySlug(slug: "santiment") {
    slug
    name
    ticker
    infrastructure
    mainContractAddress
    twitterLink
  }
}""")
pd.DataFrame(result["projectBySlug"], index=[0])
```
```
  infrastructure                         mainContractAddress       name       slug ticker                        twitterLink
0            ETH  0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098  Santiment  santiment    SAN  https://twitter.com/santimentfeed
```
## Execute SQL queries and get the result
One of the Santiment products is [Santiment Queries](https://academy.santiment.net/santiment-queries/). It allows you to execute SQL queries on a database hosted by Santiment. Explore the documentation in order to get familiar with the available data and how to write SQL queries.
In order to execute a query you need to provide your API key.
Executing a query and getting the result as a pandas DataFrame:
```python
import san
san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5")
```
```
   metric_id  asset_id                    dt  value           computed_at
0         10      1369  2015-07-17T00:00:00Z    0.0  2020-10-21T08:48:42Z
1         10      1369  2015-07-18T00:00:00Z    0.0  2020-10-21T08:48:42Z
2         10      1369  2015-07-19T00:00:00Z    0.0  2020-10-21T08:48:42Z
3         10      1369  2015-07-20T00:00:00Z    0.0  2020-10-21T08:48:42Z
4         10      1369  2015-07-21T00:00:00Z    0.0  2020-10-21T08:48:42Z
```
In order to change the index to one of the columns, provide the `set_index` parameter:
```python
import san
san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5", set_index="dt")
```
```
dt                    metric_id  asset_id  value           computed_at
2015-07-17T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-18T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-19T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-20T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-21T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
```
The queries can be parametrized. In the query the parameters are named parameters,
surrounded by two curly brackets `{{key}}`. The parameters is a dictionary. The query
can be a multiline string:
```python
san.execute_sql(query="""
  SELECT
    get_metric_name(metric_id) AS metric,
    get_asset_name(asset_id) AS asset,
    dt,
    argMax(value, computed_at)
  FROM daily_metrics_v2
  WHERE
    asset_id = get_asset_id({{slug}}) AND
    metric_id = get_metric_id({{metric}}) AND
    dt >= now() - INTERVAL {{last_n_days}} DAY
  GROUP BY dt, metric_id, asset_id
  ORDER BY dt ASC
""",
parameters={'slug': 'bitcoin', 'metric': 'daily_active_addresses', 'last_n_days': 7},
set_index="dt")
```
```
dt                                         metric   asset  value                     
2023-03-22T00:00:00Z  daily_active_addresses  bitcoin                    941446.0
2023-03-23T00:00:00Z  daily_active_addresses  bitcoin                    913215.0
2023-03-24T00:00:00Z  daily_active_addresses  bitcoin                    884271.0
2023-03-25T00:00:00Z  daily_active_addresses  bitcoin                    906851.0
2023-03-26T00:00:00Z  daily_active_addresses  bitcoin                    835596.0
2023-03-27T00:00:00Z  daily_active_addresses  bitcoin                   1052637.0
2023-03-28T00:00:00Z  daily_active_addresses  bitcoin                    311566.0
```
## Available metrics
Getting all of the metrics as a list is done using the following code:
```python
san.available_metrics()
```
## Available Metrics for Slug
Getting all of the metrics for a given slug is achieved with the following code:
```python
san.available_metrics_for_slug("santiment")
```
## Fetch timeseries metric
```python
import san
san.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
Using the defaults params (last 1 year of data with 1 day interval):
```python
san.get("daily_active_addresses", slug="santiment")
san.get("price_usd", slug="santiment")
```
## Fetching metadata for a metric
Fetching the metadata for an on-chain metric.
```python
san.metadata(
    "nvt",
    arr=["availableSlugs", "defaultAggregation", "humanReadableName", "isAccessible", "isRestricted", "restrictedFrom", "restrictedTo"]
)
```
Example result:
```python
{"availableSlugs": ["0chain", "0x", "0xbtc", "0xcert", "1sg", ...],
"defaultAggregation": "AVG", "humanReadableName": "NVT (Using Circulation)", "isAccessible": True, "isRestricted": True, "restrictedFrom": "2020-03-21T08:44:14Z", "restrictedTo": "2020-06-17T08:44:14Z"}
```
- `availableSlugs` - A list of all slugs available for this metric.
- `defaultAggregation` - If big interval are queried, all values that fall into
  this interval will be aggregated with this aggregation.
- `humanReadableName` - A name of the metric suitable for showing to users.
- `isAccessible` - `True` if the metric is accessible. If API key is configured, c
  hecks the API plan subscriptions. `False` if the metric is not accessible. For example
  `circulation_1d` requires `PRO` plan subscription in order to be accessible at
  all.
- `isRestricted` - `True` if time restrictions apply to the metric and your
  current plan (`Free` if no API key is configured). Check `restrictedFrom` and
  `restrictedTo`.
- `restrictedFrom` - The first datetime available of that metric for your current plan.
- `restrictedTo` - The last datetime available of that metric and your current plan.
## Batching multiple queries
Multiple queries can be executed in a batch to speed up the performance.
There are two batch classes provided - `Batch` and `AsyncBatch`.
> Note: Batching improves the performance and the developer experience, but every
> query put inside the batch is still counted as one separate API call.
> To fetch a metric for multiple assets at a time take a look at `san.get_many`
- `AsyncBatch` is the recommended batch class. It executes all the queries in
  separate HTTP requests. The benefit of using `AsyncBatch` over looping and
  executing every API call is that the queries can be executed concurrently. 
  Putting multiple API calls in separate HTTP calls also allows to fetch more
  data, otherwise you might run into [Complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) issues. 
  The concurrency is controlled by the `max_workers` optional parameter to the
  `execute` function. By default the `max_workers` value is 10.
  It also supports `get_many` function to fetch data for many assets.
- `Batch` combines all the provided queries in a single GraphQL document and
  executes them in a single HTTP request. This batching technique should be used
  when lightweight queries that don't fetch a lot of data are used. The reason is
  that the [complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) of each query
  is accumulated and the batch can be rejected.
Note: If you have been using `Batch()` and want to switch to the newer `AsyncBatch()` you only need to
change the batch initialization. The functions for adding queries and executing the batch, as well as the
format of the response, are the same.
```python
from san import Batch
batch = Batch()
batch.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
batch.get(
    "transaction_volume",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
[daa, trx_volume] = batch.execute()
```
```python
from san import AsyncBatch
batch = AsyncBatch()
batch.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
batch.get_many(
    "daily_active_addresses",
    slugs=["bitcoin", "ethereum"],
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
[daa, daa_many] = batch.execute(max_workers=10)
```
## Rate Limit Tools
There are two functions, which can help you in handling the rate limits:
* ``is_rate_limit_exception`` - Returns whether the exception caught is because of rate limitation
* ``rate_limit_time_left`` - Returns the time left before the rate limit expires
* ``api_calls_made`` - Returns the API calls for each day in which it was used
* ``api_calls_remaining`` - Returns the API calls remaining for the month, hour and minute
Example:
```python
import time
import san
try:
  san.get(
    "price_usd",
    slug="santiment",
    from_date="utc_now-30d",
    to_date="utc_now",
    interval="1d"
  )
except Exception as e:
  if san.is_rate_limit_exception(e):
    rate_limit_seconds = san.rate_limit_time_left(e)
    print(f"Will sleep for {rate_limit_seconds}")
    time.sleep(rate_limit_seconds)
calls_by_day = san.api_calls_made()
calls_remaining = san.api_calls_remaining()
```
## Metric Complexity
Fetch the complexity of a metric. The complexity depends on the from/to/interval
parameters, as well as the metric and the subscription plan. A request might
have a maximum complexity of 50000. If a request has a higher complexity there
are a few ways to solve the issue:
- Break down the request into multiple requests with smaller from-to ranges.
- Upgrade to a higher subscription plan.
More about the complexity can be found on [Santiment Academy]()
```python
san.metric_complexity(
    metric="price_usd",
    from_date="2020-01-01",
    to_date="2020-02-20",
    interval="1d"
)
```
## Include Incomplete Data Flag
Daily metrics have one value per day. For the current day, the latest computed
value will not include a full day of data. For example, computing
`daily_active_addresses` at 08:00 includes data for one third of the day. To
reduce confusion, the current day value for metrics that have this behaviour is
excluded. To force fetching the current day value, the `includeIncompleteData`
flag must be used.
```python
san.get(
  "daily_active_addresses/bitcoin",
  from_date="utc_now-3d",
  to_date="utc_now",
  interval="1d",
  include_incomplete_data=True
)
```
## Metric/Asset pair available cince
Fetch the first datetime for which a metric is available for a given slug.
```python
san.available_metric_for_slug_since(metric="daily_active_addresses", slug="santiment")
```
## Transform the result
Example usage:
```python
san.get(
  "price_usd",
  slug="santiment",
  from_date="2020-06-01",
  to_date="2021-06-05",
  interval="1d",
  transform={"type": "moving_average", "moving_average_base": 100},
  aggregation="LAST"
)
```
Where the parameters, that are not mentioned, are optional:
`transform` - Apply a transformation on the data. The supported transformations are:
- "moving_average" - Replace every value V<sub>i</sub> with the average of the last "moving_average_base" values.
- "consecutive_differences" - Replace every value V<sub>i</sub> with the value V<sub>i</sub> - V<sub>i-1</sub> where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
- "percent_change" - Replace every value V<sub>i</sub> with the percent change of V<sub>i-1</sub> and V<sub>i</sub> ( (V<sub>i</sub> / V<sub>i-1</sub> - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
`aggregation` - the aggregation which is used for the query results.
## Available projects
Returns a DataFrame with all the projects available in the Santiment API. Not all
metrics will be available for each of the projects.
`slug` is the unique identifier of a project, used in the metrics fetching.
```python
san.get("projects/all")
```
Example result:
```
                 name             slug ticker   totalSupply
0              0chain           0chain    ZCN     400000000
1                  0x               0x    ZRX    1000000000
2           0xBitcoin            0xbtc  0xBTC      20999984
3     0xcert Protocol           0xcert    ZXC     500000000
4              1World           1world    1WO      37219453
5        AB-Chain RTB     ab-chain-rtb    RTB      27857813
6             Abulaba          abulaba    AAA     397000000
7                 AC3              ac3    AC3    80235326.0
```
## Non-standard metrics
Here is a list of metrics that are not part of the returned list of metrics found above.
This is due to having different response format and semantics.
### Other Price metrics
#### Marketcap, Price USD, Price BTC and Trading Volume
```python
san.get(
    "prices",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
#### Open, High, Close, Low Prices, Volume, Marketcap
Note: this query cannot be batched!
```python
san.get(
    "ohlcv",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
Example result:
```python
datetime                        openPriceUsd  closePriceUsd  highPriceUsd  lowPriceUsd   volume  marketcap
2018-06-01 00:00:00+00:00       1.24380        1.27668       1.26599       1.19099       852857  7.736268e+07
2018-06-02 00:00:00+00:00       1.26136        1.30779       1.27612       1.20958      1242520  7.864724e+07
2018-06-03 00:00:00+00:00       1.28270        1.28357       1.24625       1.21872      1032910  7.844339e+07
2018-06-04 00:00:00+00:00       1.23276        1.24910       1.18528       1.18010       617451  7.604326e+07
```
### Mining Pools Distribution
Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported.
[Premium metric](#premium-metrics)
```python
san.get(
    "mining_pools_distribution",
    slug="ethereum",
    from_date="2019-06-01",
    to_date="2019-06-05",
    interval="1d"
)
```
Example result:
```
datetime                      other     top10      top3
2019-06-01 00:00:00+00:00  0.129237  0.249906  0.620857
2019-06-02 00:00:00+00:00  0.127432  0.251903  0.620666
2019-06-03 00:00:00+00:00  0.122058  0.249603  0.628339
2019-06-04 00:00:00+00:00  0.127726  0.254982  0.617293
2019-06-05 00:00:00+00:00  0.120436  0.265842  0.613722
```
### Historical Balance
Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval.
```python
san.get(
    "historical_balance",
    slug="santiment",
    address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2",
    from_date="2019-04-18",
    to_date="2019-04-23",
    interval="1d"
)
```
Example result:
```
datetime                     balance
2019-04-18 00:00:00+00:00  382338.33
2019-04-19 00:00:00+00:00  382338.33
2019-04-20 00:00:00+00:00  382338.33
2019-04-21 00:00:00+00:00  215664.33
2019-04-22 00:00:00+00:00  215664.33
```
### Ethereum Top Transactions
Top ETH transactions for project's team wallets.
Available transaction types:
- ALL
- IN
- OUT
```python
san.get(
    "eth_top_transactions",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-30",
    limit=5,
    transaction_type="ALL"
)
```
Example result:
**The result is shortened for convenience**
```
datetime                           fromAddress  fromAddressInExchange           toAddress  toAddressInExchange              trxHash      trxValue
2019-04-29 21:33:31+00:00  0xe76fe52a251c8f...                  False  0x45d6275d9496b...                False  0x776cd57382456a...        100.00
2019-04-29 21:21:18+00:00  0xe76fe52a251c8f...                  False  0x468bdccdc334f...                False  0x848414fb5c382f...         40.95
2019-04-19 14:14:52+00:00  0x1f3df0b8390bb8...                  False  0xd69bc0585e05e...                False  0x590512e1f1fbcf...         19.48
2019-04-19 14:09:58+00:00  0x1f3df0b8390bb8...                  False  0x723fb5c14eaff...                False  0x78e0720b9e72d1...         15.15
```
### Ethereum Spent Over Time
ETH spent for each interval from the project's team wallet and time period
```python
san.get(
    "eth_spent_over_time",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-23",
    interval="1d"
)
```
Example result:
```
datetime                    ethSpent
2019-04-18 00:00:00+00:00   0.000000
2019-04-19 00:00:00+00:00  34.630284
2019-04-20 00:00:00+00:00   0.000000
2019-04-21 00:00:00+00:00   0.000158
2019-04-22 00:00:00+00:00   0.000000
```
### Token Top Transactions
Top transactions for the token of a given project
```python
san.get(
    "token_top_transactions",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-30",
    limit=5
)
```
Example result:
**The result is shortened for convenience**
```
datetime                           fromAddress  fromAddressInExchange           toAddress  toAddressInExchange              trxHash      trxValue
2019-04-21 13:51:59+00:00  0x1f3df0b8390bb8...                  False  0x5eaae5e949952...                False  0xdbced935b09dd0...  166674.00000
2019-04-28 07:43:38+00:00  0x0a920bfdf7f977...                  False  0x868074aab18ea...                False  0x5f2214d34bcdc3...   33181.82279
2019-04-28 07:53:32+00:00  0x868074aab18ea3...                  False  0x876eabf441b2e...                 True  0x90bd286da38a2b...   33181.82279
2019-04-26 14:38:45+00:00  0x876eabf441b2ee...                   True  0x76af586d041d6...                False  0xe45b86f415e930...   28999.64023
2019-04-30 15:17:28+00:00  0x876eabf441b2ee...                   True  0x1f4a90043cf2d...                False  0xc85892b9ef8c64...   20544.42975
```
### Top Transfers
Top transfers for the token of a given project, ``address`` and ``transaction_type`` arguments can be added as well, in the form of a key-value pair. The ``transaction_type`` parameter can have one of these three values: ``ALL``, ``OUT``, ``IN``.
```python
san.get(
    "top_transfers",
    slug="santiment",
    from_date="utc_now-30d",
    to_date="utc_now",
)
```
**The result is shortened for convenience**
Example result:
```
                          fromAddress   toAddress     trxHash       trxValue
datetime                                                                                                                                                                                                                          
2021-06-17 00:16:26+00:00  0xa48df...  0x876ea...  0x62a56...  136114.069733
2021-06-17 00:10:05+00:00  0xbd3c2...  0x876ea...  0x732a5...  117339.779890
2021-06-19 21:36:03+00:00  0x59646...  0x0d45b...  0x5de31...  112336.882707
```
```python
san.get(
    "top_transfers",
    slug="santiment",
    address="0x26e068650ae54b6c1b149e1b926634b07e137b9f",
    transaction_type="ALL",
    from_date="utc_now-30d",
    to_date="utc_now",
)
```
Example result:
```
                          fromAddress  toAddress    trxHash   trxValue
datetime                                                                                                                                                                                        
2021-06-13 09:14:01+00:00  0x26e06...  0xfd3d...  0x4af6...  69854.528
2021-06-13 09:13:01+00:00  0x876ea...  0x26e0...  0x18c1...  69854.528
2021-06-14 08:54:52+00:00  0x876ea...  0x26e0...  0xdceb...  59920.591
```
### Emerging Trends
Emerging trends for a given period of time. 
```python
san.get(
    "emerging_trends",
    from_date="2019-07-01",
    to_date="2019-07-02",
    interval="1d",
    size=5
)
```
Example result:
```
datetime                        score    word
2019-07-01 00:00:00+00:00  375.160034    lnbc
2019-07-01 00:00:00+00:00  355.323281    dent
2019-07-01 00:00:00+00:00  268.653820    link
2019-07-01 00:00:00+00:00  231.721809  shorts
2019-07-01 00:00:00+00:00  206.812798     btt
2019-07-02 00:00:00+00:00  209.343752  bounce
2019-07-02 00:00:00+00:00  135.412811    vidt
2019-07-02 00:00:00+00:00  116.842801     bat
2019-07-02 00:00:00+00:00   98.517600  bottom
2019-07-02 00:00:00+00:00   89.309975   haiku
```
### Top Social Gainers Losers
Top social gainers/losers returns the social volume changes for crypto projects.
```python
san.get(
    "top_social_gainers_losers",
    from_date="2019-07-18",
    to_date="2019-07-30",
    size=5,
    time_window="2d",
    status="ALL"
)
```
Example result:
**The result is shortened for convenience**
```
datetime                              slug     change    status
2019-07-28 01:00:00+00:00     libra-credit  21.000000    GAINER
2019-07-28 01:00:00+00:00             aeon  -1.000000     LOSER
2019-07-28 01:00:00+00:00    thunder-token   5.000000  NEWCOMER
2019-07-28 02:00:00+00:00     libra-credit  43.000000    GAINER
2019-07-30 07:00:00+00:00            storj  12.000000  NEWCOMER
2019-07-30 11:00:00+00:00            storj  21.000000    GAINER
2019-07-30 11:00:00+00:00            aergo  -1.000000     LOSER
2019-07-30 11:00:00+00:00            litex   8.000000  NEWCOMER
```
## Extras
Take a look at the [examples](/examples/extras) folder.
## Development
It is recommended to use [pipenv](https://github.com/pypa/pipenv) for managing your local environment.
Setup project:
```bash
pipenv install
```
Install main dependencies:
```bash
pipenv run pip install -e .
```
Install extra dependencies:
```bash
pipenv run pip install -e '.[extras]'
```
## Running tests
```bash
python setup.py test
```
## Running integration tests
```bash
python setup.py nosetests -a integration
```

%package help
Summary:	Development documents and examples for sanpy
Provides:	python3-sanpy-doc
%description help
[![PyPI version](https://badge.fury.io/py/sanpy.svg)](https://badge.fury.io/py/sanpy)
Python client for cryptocurrency data from [Santiment API](https://api.santiment.net/).
This library provides utilities for accessing the GraphQL Santiment API endpoint
and convert the result to pandas dataframe.
More documentation regarding the API and definitions of metrics can be found on [Santiment Academy]()
# Table of contents
- [sanpy](#sanpy)
- [Table of contents](#table-of-contents)
  - [Installation](#installation)
  - [Upgrade to latest version](#upgrade-to-latest-version)
  - [Install extra packages](#install-extra-packages)
  - [Restricted metrics](#restricted-metrics)
  - [Configuration](#configuration)
    - [Read the API key from the environment](#read-the-api-key-from-the-environment)
    - [Manually configure an API key](#manually-configure-an-api-key)
    - [How to obtain an API key](#how-to-obtain-an-api-key)
  - [Getting the data](#getting-the-data)
    - [Using the provided functions](#using-the-provided-functions)
    - [Execute an arbitrary GraphQL request](#execute-an-arbitrary-graphql-request)
  - [Execute SQL queries and get the result](#execute-sql-queries-and-get-the-result)
  - [Available metrics](#available-metrics)
  - [Available Metrics for Slug](#available-metrics-for-slug)
  - [Fetch timeseries metric](#fetch-timeseries-metric)
  - [Fetching metadata for a metric](#fetching-metadata-for-a-metric)
  - [Batching multiple queries](#batching-multiple-queries)
  - [Rate Limit Tools](#rate-limit-tools)
  - [Metric Complexity](#metric-complexity)
  - [Include Incomplete Data Flag](#include-incomplete-data-flag)
  - [Metric/Asset pair available cince](#metricasset-pair-available-cince)
  - [Transform the result](#transform-the-result)
  - [Available projects](#available-projects)
  - [Non-standard metrics](#non-standard-metrics)
    - [Other Price metrics](#other-price-metrics)
      - [Marketcap, Price USD, Price BTC and Trading Volume](#marketcap-price-usd-price-btc-and-trading-volume)
      - [Open, High, Close, Low Prices, Volume, Marketcap](#open-high-close-low-prices-volume-marketcap)
    - [Mining Pools Distribution](#mining-pools-distribution)
    - [Historical Balance](#historical-balance)
    - [Ethereum Top Transactions](#ethereum-top-transactions)
    - [Ethereum Spent Over Time](#ethereum-spent-over-time)
    - [Token Top Transactions](#token-top-transactions)
    - [Top Transfers](#top-transfers)
    - [Emerging Trends](#emerging-trends)
    - [Top Social Gainers Losers](#top-social-gainers-losers)
  - [Extras](#extras)
  - [Development](#development)
  - [Running tests](#running-tests)
  - [Running integration tests](#running-integration-tests)
## Installation
To install the latest [sanpy from PyPI](https://pypi.org/project/sanpy/):
```bash
pip install sanpy
```
## Upgrade to latest version
```bash
pip install --upgrade sanpy
```
## Install extra packages
There are few scripts under [extras](/san/extras) directory related to backtesting and event studies. To install their dependencies use:
```bash
pip install sanpy[extras]
```
## Restricted metrics
In order to access real-time data or historical data for some of the metrics,
you'll need to set the [API key](#configuration), generated from an account with
a paid API plan.
## Configuration
You can provide an API key which gives access to the restricted metrics in two different ways:
### Read the API key from the environment
During loading of the `san` module, if the `SANPY_APIKEY` exists, its content
is read and set as the API key.
```shell
export SANPY_APIKEY="my_apikey"
```
```python
import san
>>> san.ApiConfig.api_key
'my_apikey'
```
### Manually configure an API key
```python
import san
san.ApiConfig.api_key = "my_apikey"
```
### How to obtain an API key
To obtain an API key you should [log in to sanbase](https://app.santiment.net/login)
and go to the `Account` page - [https://app.santiment.net/account](https://app.santiment.net/account).
There is an `API Keys` section and a `Generate new api key` button.
## Getting the data
### Using the provided functions
The library provides the `get` and `get_many` functions that are used to fetch data.
`get` is used to fetch timeseries data for a single metric/asset pair.
`get_many` is used to fetch timeseries data for a single metric, but many assets. This is counted as 1 API call.
The first argument to the functions is the metric name.
The rest of the parameters are::
- `slug` - (for `get`) The project identificator, as seen in [the Available projects section](#available-projects)
- `slugs` - (for `get_many`) A list of projects' identificators, as seen in [the Available projects section](#available-projects)
- `selector` - Allow for more flexible selection of the target. Some metrics are
  computed on blockchain addresses, for others you can provide a list of slugs,
  labels, amount of top holders. etc.
- `from_date` - A date or datetime in ISO8601 format specifying the start of the queried period. Defaults to `datetime.utcnow() - 365 days` 
- `to_date` - A date or datetime in ISO86091 format specifying the end of the queried period. Defaults to `datetime.utcnow()`
- `interval` - The interval between the data points in the timeseries. Defaults to `'1d'`
  It is represented in two different ways:
  - a fixed range:  an integer followed by one of: `s`, `m`, `h`, `d` or `w`
  - a function, providing some semantic or a dynamic range: `toStartOfMonth`, `toStartOfDay`, `toStartOfWeek`, `toMonday`..
The returned result for time-series data is transformed into `pandas DataFrame` and is indexed by `datetime`.
For `get`, the value column is named `value`.
For `get_many`, there is one column per asset queried. The asset slugs are used for the column names.
For backwards compatibility, fetching the metric by providing `"metric/slug"` as
the first instead of using a separate `'slug'`/`'selector'` continues to work,
but it is not the recommended approach.
For non-metric related data like getting the list of available assets, the data
is fetched by providing a string in the format `query/argument` and additional
parameters.
The examples below contain some of the described scenarios.
Fetch metric by providing `metric` as first argument and `slug` as named parameter:
```python
import san
san.get(
  "price_usd",
  slug="bitcoin",
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value
2022-01-01 00:00:00+00:00  47686.811509
2022-01-02 00:00:00+00:00  47345.220564
2022-01-03 00:00:00+00:00  46458.116959
2022-01-04 00:00:00+00:00  45928.661063
2022-01-05 00:00:00+00:00  43569.003348
```
Fetch prices for multiple assets:
```python
import san
san.get_many(
  "price_usd",
  slugs=["bitcoin", "ethereum", "tether"],
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   bitcoin       ethereum     tether                                            
2022-01-01 00:00:00+00:00  47686.811509  3769.696916  1.000500
2022-01-02 00:00:00+00:00  47345.220564  3829.565045  1.000460
2022-01-03 00:00:00+00:00  46458.116959  3761.380274  1.000165
2022-01-04 00:00:00+00:00  45928.661063  3795.890130  1.000208
2022-01-05 00:00:00+00:00  43569.003348  3550.386882  1.000122
```
Fetch development activity of a specific Github organization:
```python
import san
san.get(
  "dev_activity",
  selector={"organization": "google"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                    value     
2022-01-01 00:00:00+00:00   176.0
2022-01-02 00:00:00+00:00   129.0
2022-01-03 00:00:00+00:00   562.0
2022-01-04 00:00:00+00:00  1381.0
2022-01-05 00:00:00+00:00  1334.0
```
Fetch a metric for a contract address, not a slug:
```python
import san
san.get(
  "contract_transactions_count",
  selector={"contractAddress": "0x00000000219ab540356cBB839Cbe05303d7705Fa"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value     
2022-01-01 00:00:00+00:00   90.0
2022-01-02 00:00:00+00:00  339.0
2022-01-03 00:00:00+00:00  486.0
2022-01-04 00:00:00+00:00  314.0
2022-01-05 00:00:00+00:00  328.0
```
Fetch top holders metric and specify the number of top holders to be counted:
```python
import san
san.get(
  "amount_in_top_holders",
  selector={"slug": "santiment", "holdersCount": 10},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                   value
2022-01-01 00:00:00+00:00  7.391186e+07
2022-01-02 00:00:00+00:00  7.391438e+07
2022-01-03 00:00:00+00:00  7.391984e+07
2022-01-04 00:00:00+00:00  7.391984e+07
2022-01-05 00:00:00+00:00  7.391984e+07
```
Fetch trade volume of a given DEX for a given slug
```python
import san
# This requires Santiment API PRO apikey configured
san.get(
  "total_trade_volume_by_dex",
  selector={"slug": "ethereum", "label": "decentralized_exchange", "owner": "UniswapV2"},
  from_date="2022-01-01",
  to_date="2022-01-05",
  interval="1d"
)
```
```
datetime                    value
2022-01-01 00:00:00+00:00   96882.176846
2022-01-02 00:00:00+00:00   85184.970249
2022-01-03 00:00:00+00:00  107489.846163
2022-01-04 00:00:00+00:00  105204.677503
2022-01-05 00:00:00+00:00  174178.848916
```
Fetch metric by providing `metric/slug` as first argument and no `slug` as named parameter:
```python
import san
san.get(
    "daily_active_addresses/bitcoin",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
```
datetime                   value      
2018-06-01 00:00:00+00:00  692508.0
2018-06-02 00:00:00+00:00  521887.0
2018-06-03 00:00:00+00:00  531464.0
2018-06-04 00:00:00+00:00  702902.0
2018-06-05 00:00:00+00:00  655695.0
```
Fetch non-timeseries data:
```python
import san
san.get("projects/all")
```
```
                name             slug ticker   totalSupply
0             0chain           0chain    ZCN     400000000
1                 0x               0x    ZRX    1000000000
2          0xBitcoin            0xbtc  0xBTC      20999984
```
### Execute an arbitrary GraphQL request
Some of the available queries in the [Santiment API](https://api.santiment.net) do not have a 
dedicated sanpy function. Alternatively, if the returned format needs to be parsed differently, this approach
can be used, too. They can be fetched by providing the raw GraphQL query.
Fetching data for many slugs at the same time. Note that this is also available as `san.get_many`
```python
import san
import pandas as pd
result = san.graphql.execute_gql("""
{
  getMetric(metric: "price_usd") {
    timeseriesDataPerSlug(
      selector: {slugs: ["ethereum", "bitcoin"]}
      from: "2022-05-05T00:00:00Z"
      to: "2022-05-08T00:00:00Z"
      interval: "1d") {
        datetime
        data{
          value
          slug
        }
    }
  }
}
""")
data = result['getMetric']['timeseriesDataPerSlug']
rows = []
for datetime_point in data:
    row = {'datetime': datetime_point['datetime']}
    for slug_data in datetime_point['data']:
        row[slug_data['slug']] = slug_data['value']
    rows.append(row)
df = pd.DataFrame(rows)
df.set_index('datetime', inplace=True)
```
```
datetime              bitcoin       ethereum                
2022-05-05T00:00:00Z  36575.142133  2749.213042
2022-05-06T00:00:00Z  36040.922350  2694.979684
2022-05-07T00:00:00Z  35501.954144  2636.092958
```
Fetching a specific set of fields for a project:
```python
import san
import pandas as pd
result = san.graphql.execute_gql("""{
  projectBySlug(slug: "santiment") {
    slug
    name
    ticker
    infrastructure
    mainContractAddress
    twitterLink
  }
}""")
pd.DataFrame(result["projectBySlug"], index=[0])
```
```
  infrastructure                         mainContractAddress       name       slug ticker                        twitterLink
0            ETH  0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098  Santiment  santiment    SAN  https://twitter.com/santimentfeed
```
## Execute SQL queries and get the result
One of the Santiment products is [Santiment Queries](https://academy.santiment.net/santiment-queries/). It allows you to execute SQL queries on a database hosted by Santiment. Explore the documentation in order to get familiar with the available data and how to write SQL queries.
In order to execute a query you need to provide your API key.
Executing a query and getting the result as a pandas DataFrame:
```python
import san
san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5")
```
```
   metric_id  asset_id                    dt  value           computed_at
0         10      1369  2015-07-17T00:00:00Z    0.0  2020-10-21T08:48:42Z
1         10      1369  2015-07-18T00:00:00Z    0.0  2020-10-21T08:48:42Z
2         10      1369  2015-07-19T00:00:00Z    0.0  2020-10-21T08:48:42Z
3         10      1369  2015-07-20T00:00:00Z    0.0  2020-10-21T08:48:42Z
4         10      1369  2015-07-21T00:00:00Z    0.0  2020-10-21T08:48:42Z
```
In order to change the index to one of the columns, provide the `set_index` parameter:
```python
import san
san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5", set_index="dt")
```
```
dt                    metric_id  asset_id  value           computed_at
2015-07-17T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-18T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-19T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-20T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
2015-07-21T00:00:00Z         10      1369    0.0  2020-10-21T08:48:42Z
```
The queries can be parametrized. In the query the parameters are named parameters,
surrounded by two curly brackets `{{key}}`. The parameters is a dictionary. The query
can be a multiline string:
```python
san.execute_sql(query="""
  SELECT
    get_metric_name(metric_id) AS metric,
    get_asset_name(asset_id) AS asset,
    dt,
    argMax(value, computed_at)
  FROM daily_metrics_v2
  WHERE
    asset_id = get_asset_id({{slug}}) AND
    metric_id = get_metric_id({{metric}}) AND
    dt >= now() - INTERVAL {{last_n_days}} DAY
  GROUP BY dt, metric_id, asset_id
  ORDER BY dt ASC
""",
parameters={'slug': 'bitcoin', 'metric': 'daily_active_addresses', 'last_n_days': 7},
set_index="dt")
```
```
dt                                         metric   asset  value                     
2023-03-22T00:00:00Z  daily_active_addresses  bitcoin                    941446.0
2023-03-23T00:00:00Z  daily_active_addresses  bitcoin                    913215.0
2023-03-24T00:00:00Z  daily_active_addresses  bitcoin                    884271.0
2023-03-25T00:00:00Z  daily_active_addresses  bitcoin                    906851.0
2023-03-26T00:00:00Z  daily_active_addresses  bitcoin                    835596.0
2023-03-27T00:00:00Z  daily_active_addresses  bitcoin                   1052637.0
2023-03-28T00:00:00Z  daily_active_addresses  bitcoin                    311566.0
```
## Available metrics
Getting all of the metrics as a list is done using the following code:
```python
san.available_metrics()
```
## Available Metrics for Slug
Getting all of the metrics for a given slug is achieved with the following code:
```python
san.available_metrics_for_slug("santiment")
```
## Fetch timeseries metric
```python
import san
san.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
Using the defaults params (last 1 year of data with 1 day interval):
```python
san.get("daily_active_addresses", slug="santiment")
san.get("price_usd", slug="santiment")
```
## Fetching metadata for a metric
Fetching the metadata for an on-chain metric.
```python
san.metadata(
    "nvt",
    arr=["availableSlugs", "defaultAggregation", "humanReadableName", "isAccessible", "isRestricted", "restrictedFrom", "restrictedTo"]
)
```
Example result:
```python
{"availableSlugs": ["0chain", "0x", "0xbtc", "0xcert", "1sg", ...],
"defaultAggregation": "AVG", "humanReadableName": "NVT (Using Circulation)", "isAccessible": True, "isRestricted": True, "restrictedFrom": "2020-03-21T08:44:14Z", "restrictedTo": "2020-06-17T08:44:14Z"}
```
- `availableSlugs` - A list of all slugs available for this metric.
- `defaultAggregation` - If big interval are queried, all values that fall into
  this interval will be aggregated with this aggregation.
- `humanReadableName` - A name of the metric suitable for showing to users.
- `isAccessible` - `True` if the metric is accessible. If API key is configured, c
  hecks the API plan subscriptions. `False` if the metric is not accessible. For example
  `circulation_1d` requires `PRO` plan subscription in order to be accessible at
  all.
- `isRestricted` - `True` if time restrictions apply to the metric and your
  current plan (`Free` if no API key is configured). Check `restrictedFrom` and
  `restrictedTo`.
- `restrictedFrom` - The first datetime available of that metric for your current plan.
- `restrictedTo` - The last datetime available of that metric and your current plan.
## Batching multiple queries
Multiple queries can be executed in a batch to speed up the performance.
There are two batch classes provided - `Batch` and `AsyncBatch`.
> Note: Batching improves the performance and the developer experience, but every
> query put inside the batch is still counted as one separate API call.
> To fetch a metric for multiple assets at a time take a look at `san.get_many`
- `AsyncBatch` is the recommended batch class. It executes all the queries in
  separate HTTP requests. The benefit of using `AsyncBatch` over looping and
  executing every API call is that the queries can be executed concurrently. 
  Putting multiple API calls in separate HTTP calls also allows to fetch more
  data, otherwise you might run into [Complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) issues. 
  The concurrency is controlled by the `max_workers` optional parameter to the
  `execute` function. By default the `max_workers` value is 10.
  It also supports `get_many` function to fetch data for many assets.
- `Batch` combines all the provided queries in a single GraphQL document and
  executes them in a single HTTP request. This batching technique should be used
  when lightweight queries that don't fetch a lot of data are used. The reason is
  that the [complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) of each query
  is accumulated and the batch can be rejected.
Note: If you have been using `Batch()` and want to switch to the newer `AsyncBatch()` you only need to
change the batch initialization. The functions for adding queries and executing the batch, as well as the
format of the response, are the same.
```python
from san import Batch
batch = Batch()
batch.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
batch.get(
    "transaction_volume",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
[daa, trx_volume] = batch.execute()
```
```python
from san import AsyncBatch
batch = AsyncBatch()
batch.get(
    "daily_active_addresses",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
batch.get_many(
    "daily_active_addresses",
    slugs=["bitcoin", "ethereum"],
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
[daa, daa_many] = batch.execute(max_workers=10)
```
## Rate Limit Tools
There are two functions, which can help you in handling the rate limits:
* ``is_rate_limit_exception`` - Returns whether the exception caught is because of rate limitation
* ``rate_limit_time_left`` - Returns the time left before the rate limit expires
* ``api_calls_made`` - Returns the API calls for each day in which it was used
* ``api_calls_remaining`` - Returns the API calls remaining for the month, hour and minute
Example:
```python
import time
import san
try:
  san.get(
    "price_usd",
    slug="santiment",
    from_date="utc_now-30d",
    to_date="utc_now",
    interval="1d"
  )
except Exception as e:
  if san.is_rate_limit_exception(e):
    rate_limit_seconds = san.rate_limit_time_left(e)
    print(f"Will sleep for {rate_limit_seconds}")
    time.sleep(rate_limit_seconds)
calls_by_day = san.api_calls_made()
calls_remaining = san.api_calls_remaining()
```
## Metric Complexity
Fetch the complexity of a metric. The complexity depends on the from/to/interval
parameters, as well as the metric and the subscription plan. A request might
have a maximum complexity of 50000. If a request has a higher complexity there
are a few ways to solve the issue:
- Break down the request into multiple requests with smaller from-to ranges.
- Upgrade to a higher subscription plan.
More about the complexity can be found on [Santiment Academy]()
```python
san.metric_complexity(
    metric="price_usd",
    from_date="2020-01-01",
    to_date="2020-02-20",
    interval="1d"
)
```
## Include Incomplete Data Flag
Daily metrics have one value per day. For the current day, the latest computed
value will not include a full day of data. For example, computing
`daily_active_addresses` at 08:00 includes data for one third of the day. To
reduce confusion, the current day value for metrics that have this behaviour is
excluded. To force fetching the current day value, the `includeIncompleteData`
flag must be used.
```python
san.get(
  "daily_active_addresses/bitcoin",
  from_date="utc_now-3d",
  to_date="utc_now",
  interval="1d",
  include_incomplete_data=True
)
```
## Metric/Asset pair available cince
Fetch the first datetime for which a metric is available for a given slug.
```python
san.available_metric_for_slug_since(metric="daily_active_addresses", slug="santiment")
```
## Transform the result
Example usage:
```python
san.get(
  "price_usd",
  slug="santiment",
  from_date="2020-06-01",
  to_date="2021-06-05",
  interval="1d",
  transform={"type": "moving_average", "moving_average_base": 100},
  aggregation="LAST"
)
```
Where the parameters, that are not mentioned, are optional:
`transform` - Apply a transformation on the data. The supported transformations are:
- "moving_average" - Replace every value V<sub>i</sub> with the average of the last "moving_average_base" values.
- "consecutive_differences" - Replace every value V<sub>i</sub> with the value V<sub>i</sub> - V<sub>i-1</sub> where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
- "percent_change" - Replace every value V<sub>i</sub> with the percent change of V<sub>i-1</sub> and V<sub>i</sub> ( (V<sub>i</sub> / V<sub>i-1</sub> - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
`aggregation` - the aggregation which is used for the query results.
## Available projects
Returns a DataFrame with all the projects available in the Santiment API. Not all
metrics will be available for each of the projects.
`slug` is the unique identifier of a project, used in the metrics fetching.
```python
san.get("projects/all")
```
Example result:
```
                 name             slug ticker   totalSupply
0              0chain           0chain    ZCN     400000000
1                  0x               0x    ZRX    1000000000
2           0xBitcoin            0xbtc  0xBTC      20999984
3     0xcert Protocol           0xcert    ZXC     500000000
4              1World           1world    1WO      37219453
5        AB-Chain RTB     ab-chain-rtb    RTB      27857813
6             Abulaba          abulaba    AAA     397000000
7                 AC3              ac3    AC3    80235326.0
```
## Non-standard metrics
Here is a list of metrics that are not part of the returned list of metrics found above.
This is due to having different response format and semantics.
### Other Price metrics
#### Marketcap, Price USD, Price BTC and Trading Volume
```python
san.get(
    "prices",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
#### Open, High, Close, Low Prices, Volume, Marketcap
Note: this query cannot be batched!
```python
san.get(
    "ohlcv",
    slug="santiment",
    from_date="2018-06-01",
    to_date="2018-06-05",
    interval="1d"
)
```
Example result:
```python
datetime                        openPriceUsd  closePriceUsd  highPriceUsd  lowPriceUsd   volume  marketcap
2018-06-01 00:00:00+00:00       1.24380        1.27668       1.26599       1.19099       852857  7.736268e+07
2018-06-02 00:00:00+00:00       1.26136        1.30779       1.27612       1.20958      1242520  7.864724e+07
2018-06-03 00:00:00+00:00       1.28270        1.28357       1.24625       1.21872      1032910  7.844339e+07
2018-06-04 00:00:00+00:00       1.23276        1.24910       1.18528       1.18010       617451  7.604326e+07
```
### Mining Pools Distribution
Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported.
[Premium metric](#premium-metrics)
```python
san.get(
    "mining_pools_distribution",
    slug="ethereum",
    from_date="2019-06-01",
    to_date="2019-06-05",
    interval="1d"
)
```
Example result:
```
datetime                      other     top10      top3
2019-06-01 00:00:00+00:00  0.129237  0.249906  0.620857
2019-06-02 00:00:00+00:00  0.127432  0.251903  0.620666
2019-06-03 00:00:00+00:00  0.122058  0.249603  0.628339
2019-06-04 00:00:00+00:00  0.127726  0.254982  0.617293
2019-06-05 00:00:00+00:00  0.120436  0.265842  0.613722
```
### Historical Balance
Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval.
```python
san.get(
    "historical_balance",
    slug="santiment",
    address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2",
    from_date="2019-04-18",
    to_date="2019-04-23",
    interval="1d"
)
```
Example result:
```
datetime                     balance
2019-04-18 00:00:00+00:00  382338.33
2019-04-19 00:00:00+00:00  382338.33
2019-04-20 00:00:00+00:00  382338.33
2019-04-21 00:00:00+00:00  215664.33
2019-04-22 00:00:00+00:00  215664.33
```
### Ethereum Top Transactions
Top ETH transactions for project's team wallets.
Available transaction types:
- ALL
- IN
- OUT
```python
san.get(
    "eth_top_transactions",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-30",
    limit=5,
    transaction_type="ALL"
)
```
Example result:
**The result is shortened for convenience**
```
datetime                           fromAddress  fromAddressInExchange           toAddress  toAddressInExchange              trxHash      trxValue
2019-04-29 21:33:31+00:00  0xe76fe52a251c8f...                  False  0x45d6275d9496b...                False  0x776cd57382456a...        100.00
2019-04-29 21:21:18+00:00  0xe76fe52a251c8f...                  False  0x468bdccdc334f...                False  0x848414fb5c382f...         40.95
2019-04-19 14:14:52+00:00  0x1f3df0b8390bb8...                  False  0xd69bc0585e05e...                False  0x590512e1f1fbcf...         19.48
2019-04-19 14:09:58+00:00  0x1f3df0b8390bb8...                  False  0x723fb5c14eaff...                False  0x78e0720b9e72d1...         15.15
```
### Ethereum Spent Over Time
ETH spent for each interval from the project's team wallet and time period
```python
san.get(
    "eth_spent_over_time",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-23",
    interval="1d"
)
```
Example result:
```
datetime                    ethSpent
2019-04-18 00:00:00+00:00   0.000000
2019-04-19 00:00:00+00:00  34.630284
2019-04-20 00:00:00+00:00   0.000000
2019-04-21 00:00:00+00:00   0.000158
2019-04-22 00:00:00+00:00   0.000000
```
### Token Top Transactions
Top transactions for the token of a given project
```python
san.get(
    "token_top_transactions",
    slug="santiment",
    from_date="2019-04-18",
    to_date="2019-04-30",
    limit=5
)
```
Example result:
**The result is shortened for convenience**
```
datetime                           fromAddress  fromAddressInExchange           toAddress  toAddressInExchange              trxHash      trxValue
2019-04-21 13:51:59+00:00  0x1f3df0b8390bb8...                  False  0x5eaae5e949952...                False  0xdbced935b09dd0...  166674.00000
2019-04-28 07:43:38+00:00  0x0a920bfdf7f977...                  False  0x868074aab18ea...                False  0x5f2214d34bcdc3...   33181.82279
2019-04-28 07:53:32+00:00  0x868074aab18ea3...                  False  0x876eabf441b2e...                 True  0x90bd286da38a2b...   33181.82279
2019-04-26 14:38:45+00:00  0x876eabf441b2ee...                   True  0x76af586d041d6...                False  0xe45b86f415e930...   28999.64023
2019-04-30 15:17:28+00:00  0x876eabf441b2ee...                   True  0x1f4a90043cf2d...                False  0xc85892b9ef8c64...   20544.42975
```
### Top Transfers
Top transfers for the token of a given project, ``address`` and ``transaction_type`` arguments can be added as well, in the form of a key-value pair. The ``transaction_type`` parameter can have one of these three values: ``ALL``, ``OUT``, ``IN``.
```python
san.get(
    "top_transfers",
    slug="santiment",
    from_date="utc_now-30d",
    to_date="utc_now",
)
```
**The result is shortened for convenience**
Example result:
```
                          fromAddress   toAddress     trxHash       trxValue
datetime                                                                                                                                                                                                                          
2021-06-17 00:16:26+00:00  0xa48df...  0x876ea...  0x62a56...  136114.069733
2021-06-17 00:10:05+00:00  0xbd3c2...  0x876ea...  0x732a5...  117339.779890
2021-06-19 21:36:03+00:00  0x59646...  0x0d45b...  0x5de31...  112336.882707
```
```python
san.get(
    "top_transfers",
    slug="santiment",
    address="0x26e068650ae54b6c1b149e1b926634b07e137b9f",
    transaction_type="ALL",
    from_date="utc_now-30d",
    to_date="utc_now",
)
```
Example result:
```
                          fromAddress  toAddress    trxHash   trxValue
datetime                                                                                                                                                                                        
2021-06-13 09:14:01+00:00  0x26e06...  0xfd3d...  0x4af6...  69854.528
2021-06-13 09:13:01+00:00  0x876ea...  0x26e0...  0x18c1...  69854.528
2021-06-14 08:54:52+00:00  0x876ea...  0x26e0...  0xdceb...  59920.591
```
### Emerging Trends
Emerging trends for a given period of time. 
```python
san.get(
    "emerging_trends",
    from_date="2019-07-01",
    to_date="2019-07-02",
    interval="1d",
    size=5
)
```
Example result:
```
datetime                        score    word
2019-07-01 00:00:00+00:00  375.160034    lnbc
2019-07-01 00:00:00+00:00  355.323281    dent
2019-07-01 00:00:00+00:00  268.653820    link
2019-07-01 00:00:00+00:00  231.721809  shorts
2019-07-01 00:00:00+00:00  206.812798     btt
2019-07-02 00:00:00+00:00  209.343752  bounce
2019-07-02 00:00:00+00:00  135.412811    vidt
2019-07-02 00:00:00+00:00  116.842801     bat
2019-07-02 00:00:00+00:00   98.517600  bottom
2019-07-02 00:00:00+00:00   89.309975   haiku
```
### Top Social Gainers Losers
Top social gainers/losers returns the social volume changes for crypto projects.
```python
san.get(
    "top_social_gainers_losers",
    from_date="2019-07-18",
    to_date="2019-07-30",
    size=5,
    time_window="2d",
    status="ALL"
)
```
Example result:
**The result is shortened for convenience**
```
datetime                              slug     change    status
2019-07-28 01:00:00+00:00     libra-credit  21.000000    GAINER
2019-07-28 01:00:00+00:00             aeon  -1.000000     LOSER
2019-07-28 01:00:00+00:00    thunder-token   5.000000  NEWCOMER
2019-07-28 02:00:00+00:00     libra-credit  43.000000    GAINER
2019-07-30 07:00:00+00:00            storj  12.000000  NEWCOMER
2019-07-30 11:00:00+00:00            storj  21.000000    GAINER
2019-07-30 11:00:00+00:00            aergo  -1.000000     LOSER
2019-07-30 11:00:00+00:00            litex   8.000000  NEWCOMER
```
## Extras
Take a look at the [examples](/examples/extras) folder.
## Development
It is recommended to use [pipenv](https://github.com/pypa/pipenv) for managing your local environment.
Setup project:
```bash
pipenv install
```
Install main dependencies:
```bash
pipenv run pip install -e .
```
Install extra dependencies:
```bash
pipenv run pip install -e '.[extras]'
```
## Running tests
```bash
python setup.py test
```
## Running integration tests
```bash
python setup.py nosetests -a integration
```

%prep
%autosetup -n sanpy-0.11.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sanpy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11.6-1
- Package Spec generated