summaryrefslogtreecommitdiff
path: root/python-scale-nucleus.spec
blob: 46f6232e1390a7216e063ceb0eade0fbed1553e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
%global _empty_manifest_terminate_build 0
Name:		python-scale-nucleus
Version:	0.15.4
Release:	1
Summary:	The official Python client library for Nucleus, the Data Platform for AI
License:	MIT
URL:		https://scale.com/nucleus
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/5b/b5/429360399e1411ebcc7f854d49d9a94a02c801cbe701cec7d438a83d6d16/scale-nucleus-0.15.4.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-tqdm
Requires:	python3-dataclasses
Requires:	python3-aiohttp
Requires:	python3-nest-asyncio
Requires:	python3-pydantic
Requires:	python3-numpy
Requires:	python3-numpy
Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-click
Requires:	python3-rich
Requires:	python3-shellingham
Requires:	python3-scikit-learn
Requires:	python3-Shapely
Requires:	python3-rasterio
Requires:	python3-Pillow
Requires:	python3-scale-launch
Requires:	python3-astroid
Requires:	python3-questionary
Requires:	python3-dateutil

%description
# Nucleus

https://dashboard.scale.com/nucleus

Aggregate metrics in ML are not good enough. To improve production ML, you need to understand their qualitative failure modes, fix them by gathering more data, and curate diverse scenarios.

Scale Nucleus helps you:

- Visualize your data
- Curate interesting slices within your dataset
- Review and manage annotations
- Measure and debug your model performance

Nucleus is a new way—the right way—to develop ML models, helping us move away from the concept of one dataset and towards a paradigm of collections of scenarios.

## Installation

`$ pip install scale-nucleus`

## CLI installation

We recommend installing the CLI via `pipx` (https://pypa.github.io/pipx/installation/). This makes sure that
the CLI does not interfere with you system packages and is accessible from your favorite terminal.

For MacOS:

```bash
brew install pipx
pipx ensurepath
pipx install scale-nucleus
# Optional installation of shell completion (for bash, zsh or fish)
nu install-completions
```

Otherwise, install via pip (requires pip 19.0 or later):

```bash
python3 -m pip install --user pipx
python3 -m pipx ensurepath
python3 -m pipx install scale-nucleus
# Optional installation of shell completion (for bash, zsh or fish)
nu install-completions
```

## Common issues/FAQ

### Outdated Client

Nucleus is iterating rapidly and as a result we do not always perfectly preserve backwards compatibility with older versions of the client. If you run into any unexpected error, it's a good idea to upgrade your version of the client by running

```
pip install --upgrade scale-nucleus
```

## Usage

For the most up to date documentation, reference: https://dashboard.scale.com/nucleus/docs/api?language=python.

## For Developers

Clone from github and install as editable

```
git clone git@github.com:scaleapi/nucleus-python-client.git
cd nucleus-python-client
pip3 install poetry
poetry install
```

Please install the pre-commit hooks by running the following command:

```python
poetry run pre-commit install
```

When releasing a new version please add release notes to the changelog in `CHANGELOG.md`.

**Best practices for testing:**
(1). Please run pytest from the root directory of the repo, i.e.

```
poetry run pytest tests/test_dataset.py
```

(2) To skip slow integration tests that have to wait for an async job to start.

```
poetry run pytest -m "not integration"
```

## Pydantic Models

Prefer using [Pydantic](https://pydantic-docs.helpmanual.io/usage/models/) models rather than creating raw dictionaries
or dataclasses to send or receive over the wire as JSONs. Pydantic is created with data validation in mind and provides very clear error
messages when it encounters a problem with the payload.

The Pydantic model(s) should mirror the payload to send. To represent a JSON payload that looks like this:

```json
{
  "example_json_with_info": {
    "metadata": {
      "frame": 0
    },
    "reference_id": "frame0",
    "url": "s3://example/scale_nucleus/2021/lidar/0038711321865000.json",
    "type": "pointcloud"
  },
  "example_image_with_info": {
    "metadata": {
      "author": "Picasso"
    },
    "reference_id": "frame0",
    "url": "s3://bucket/0038711321865000.jpg",
    "type": "image"
  }
}
```

Could be represented as the following structure. Note that the field names map to the JSON keys and the usage of field
validators (`@validator`).

```python
import os.path
from pydantic import BaseModel, validator
from typing import Literal


class JsonWithInfo(BaseModel):
    metadata: dict  # any dict is valid
    reference_id: str
    url: str
    type: Literal["pointcloud", "recipe"]

    @validator("url")
    def has_json_extension(cls, v):
        if not v.endswith(".json"):
            raise ValueError(f"Expected '.json' extension got {v}")
        return v


class ImageWithInfo(BaseModel):
    metadata: dict  # any dict is valid
    reference_id: str
    url: str
    type: Literal["image", "mask"]

    @validator("url")
    def has_valid_extension(cls, v):
        valid_extensions = {".jpg", ".jpeg", ".png", ".tiff"}
        _, extension = os.path.splitext(v)
        if extension not in valid_extensions:
            raise ValueError(f"Expected extension in {valid_extensions} got {v}")
        return v


class ExampleNestedModel(BaseModel):
    example_json_with_info: JsonWithInfo
    example_image_with_info: ImageWithInfo

# Usage:
import requests
payload = requests.get("/example")
parsed_model = ExampleNestedModel.parse_obj(payload.json())
requests.post("example/post_to", json=parsed_model.dict())
```

### Migrating to Pydantic

- When migrating an interface from a dictionary use `nucleus.pydantic_base.DictCompatibleModel`. That allows you to get
  the benefits of Pydantic but maintaints backwards compatibility with a Python dictionary by delegating `__getitem__` to
  fields.
- When migrating a frozen dataclass use `nucleus.pydantic_base.ImmutableModel`. That is a base class set up to be
  immutable after initialization.

**Updating documentation:**
We use [Sphinx](https://www.sphinx-doc.org/en/master/) to autogenerate our API Reference from docstrings.

To test your local docstring changes, run the following commands from the repository's root directory:

```
poetry shell
cd docs
sphinx-autobuild . ./_build/html --watch ../nucleus
```

`sphinx-autobuild` will spin up a server on localhost (port 8000 by default) that will watch for and automatically rebuild a version of the API reference based on your local docstring changes.

## Custom Metrics using Shapely in scale-validate

Certain metrics use `Shapely` and `rasterio` which is added as optional dependencies.

```bash
pip install scale-nucleus[metrics]
```

Note that you might need to install a local GEOS package since Shapely doesn't provide binaries bundled with GEOS for every platform.

```bash
#Mac OS
brew install geos
# Ubuntu/Debian flavors
apt-get install libgeos-dev
```

To develop it locally use

`poetry install --extras metrics`


%package -n python3-scale-nucleus
Summary:	The official Python client library for Nucleus, the Data Platform for AI
Provides:	python-scale-nucleus
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-scale-nucleus
# Nucleus

https://dashboard.scale.com/nucleus

Aggregate metrics in ML are not good enough. To improve production ML, you need to understand their qualitative failure modes, fix them by gathering more data, and curate diverse scenarios.

Scale Nucleus helps you:

- Visualize your data
- Curate interesting slices within your dataset
- Review and manage annotations
- Measure and debug your model performance

Nucleus is a new way—the right way—to develop ML models, helping us move away from the concept of one dataset and towards a paradigm of collections of scenarios.

## Installation

`$ pip install scale-nucleus`

## CLI installation

We recommend installing the CLI via `pipx` (https://pypa.github.io/pipx/installation/). This makes sure that
the CLI does not interfere with you system packages and is accessible from your favorite terminal.

For MacOS:

```bash
brew install pipx
pipx ensurepath
pipx install scale-nucleus
# Optional installation of shell completion (for bash, zsh or fish)
nu install-completions
```

Otherwise, install via pip (requires pip 19.0 or later):

```bash
python3 -m pip install --user pipx
python3 -m pipx ensurepath
python3 -m pipx install scale-nucleus
# Optional installation of shell completion (for bash, zsh or fish)
nu install-completions
```

## Common issues/FAQ

### Outdated Client

Nucleus is iterating rapidly and as a result we do not always perfectly preserve backwards compatibility with older versions of the client. If you run into any unexpected error, it's a good idea to upgrade your version of the client by running

```
pip install --upgrade scale-nucleus
```

## Usage

For the most up to date documentation, reference: https://dashboard.scale.com/nucleus/docs/api?language=python.

## For Developers

Clone from github and install as editable

```
git clone git@github.com:scaleapi/nucleus-python-client.git
cd nucleus-python-client
pip3 install poetry
poetry install
```

Please install the pre-commit hooks by running the following command:

```python
poetry run pre-commit install
```

When releasing a new version please add release notes to the changelog in `CHANGELOG.md`.

**Best practices for testing:**
(1). Please run pytest from the root directory of the repo, i.e.

```
poetry run pytest tests/test_dataset.py
```

(2) To skip slow integration tests that have to wait for an async job to start.

```
poetry run pytest -m "not integration"
```

## Pydantic Models

Prefer using [Pydantic](https://pydantic-docs.helpmanual.io/usage/models/) models rather than creating raw dictionaries
or dataclasses to send or receive over the wire as JSONs. Pydantic is created with data validation in mind and provides very clear error
messages when it encounters a problem with the payload.

The Pydantic model(s) should mirror the payload to send. To represent a JSON payload that looks like this:

```json
{
  "example_json_with_info": {
    "metadata": {
      "frame": 0
    },
    "reference_id": "frame0",
    "url": "s3://example/scale_nucleus/2021/lidar/0038711321865000.json",
    "type": "pointcloud"
  },
  "example_image_with_info": {
    "metadata": {
      "author": "Picasso"
    },
    "reference_id": "frame0",
    "url": "s3://bucket/0038711321865000.jpg",
    "type": "image"
  }
}
```

Could be represented as the following structure. Note that the field names map to the JSON keys and the usage of field
validators (`@validator`).

```python
import os.path
from pydantic import BaseModel, validator
from typing import Literal


class JsonWithInfo(BaseModel):
    metadata: dict  # any dict is valid
    reference_id: str
    url: str
    type: Literal["pointcloud", "recipe"]

    @validator("url")
    def has_json_extension(cls, v):
        if not v.endswith(".json"):
            raise ValueError(f"Expected '.json' extension got {v}")
        return v


class ImageWithInfo(BaseModel):
    metadata: dict  # any dict is valid
    reference_id: str
    url: str
    type: Literal["image", "mask"]

    @validator("url")
    def has_valid_extension(cls, v):
        valid_extensions = {".jpg", ".jpeg", ".png", ".tiff"}
        _, extension = os.path.splitext(v)
        if extension not in valid_extensions:
            raise ValueError(f"Expected extension in {valid_extensions} got {v}")
        return v


class ExampleNestedModel(BaseModel):
    example_json_with_info: JsonWithInfo
    example_image_with_info: ImageWithInfo

# Usage:
import requests
payload = requests.get("/example")
parsed_model = ExampleNestedModel.parse_obj(payload.json())
requests.post("example/post_to", json=parsed_model.dict())
```

### Migrating to Pydantic

- When migrating an interface from a dictionary use `nucleus.pydantic_base.DictCompatibleModel`. That allows you to get
  the benefits of Pydantic but maintaints backwards compatibility with a Python dictionary by delegating `__getitem__` to
  fields.
- When migrating a frozen dataclass use `nucleus.pydantic_base.ImmutableModel`. That is a base class set up to be
  immutable after initialization.

**Updating documentation:**
We use [Sphinx](https://www.sphinx-doc.org/en/master/) to autogenerate our API Reference from docstrings.

To test your local docstring changes, run the following commands from the repository's root directory:

```
poetry shell
cd docs
sphinx-autobuild . ./_build/html --watch ../nucleus
```

`sphinx-autobuild` will spin up a server on localhost (port 8000 by default) that will watch for and automatically rebuild a version of the API reference based on your local docstring changes.

## Custom Metrics using Shapely in scale-validate

Certain metrics use `Shapely` and `rasterio` which is added as optional dependencies.

```bash
pip install scale-nucleus[metrics]
```

Note that you might need to install a local GEOS package since Shapely doesn't provide binaries bundled with GEOS for every platform.

```bash
#Mac OS
brew install geos
# Ubuntu/Debian flavors
apt-get install libgeos-dev
```

To develop it locally use

`poetry install --extras metrics`


%package help
Summary:	Development documents and examples for scale-nucleus
Provides:	python3-scale-nucleus-doc
%description help
# Nucleus

https://dashboard.scale.com/nucleus

Aggregate metrics in ML are not good enough. To improve production ML, you need to understand their qualitative failure modes, fix them by gathering more data, and curate diverse scenarios.

Scale Nucleus helps you:

- Visualize your data
- Curate interesting slices within your dataset
- Review and manage annotations
- Measure and debug your model performance

Nucleus is a new way—the right way—to develop ML models, helping us move away from the concept of one dataset and towards a paradigm of collections of scenarios.

## Installation

`$ pip install scale-nucleus`

## CLI installation

We recommend installing the CLI via `pipx` (https://pypa.github.io/pipx/installation/). This makes sure that
the CLI does not interfere with you system packages and is accessible from your favorite terminal.

For MacOS:

```bash
brew install pipx
pipx ensurepath
pipx install scale-nucleus
# Optional installation of shell completion (for bash, zsh or fish)
nu install-completions
```

Otherwise, install via pip (requires pip 19.0 or later):

```bash
python3 -m pip install --user pipx
python3 -m pipx ensurepath
python3 -m pipx install scale-nucleus
# Optional installation of shell completion (for bash, zsh or fish)
nu install-completions
```

## Common issues/FAQ

### Outdated Client

Nucleus is iterating rapidly and as a result we do not always perfectly preserve backwards compatibility with older versions of the client. If you run into any unexpected error, it's a good idea to upgrade your version of the client by running

```
pip install --upgrade scale-nucleus
```

## Usage

For the most up to date documentation, reference: https://dashboard.scale.com/nucleus/docs/api?language=python.

## For Developers

Clone from github and install as editable

```
git clone git@github.com:scaleapi/nucleus-python-client.git
cd nucleus-python-client
pip3 install poetry
poetry install
```

Please install the pre-commit hooks by running the following command:

```python
poetry run pre-commit install
```

When releasing a new version please add release notes to the changelog in `CHANGELOG.md`.

**Best practices for testing:**
(1). Please run pytest from the root directory of the repo, i.e.

```
poetry run pytest tests/test_dataset.py
```

(2) To skip slow integration tests that have to wait for an async job to start.

```
poetry run pytest -m "not integration"
```

## Pydantic Models

Prefer using [Pydantic](https://pydantic-docs.helpmanual.io/usage/models/) models rather than creating raw dictionaries
or dataclasses to send or receive over the wire as JSONs. Pydantic is created with data validation in mind and provides very clear error
messages when it encounters a problem with the payload.

The Pydantic model(s) should mirror the payload to send. To represent a JSON payload that looks like this:

```json
{
  "example_json_with_info": {
    "metadata": {
      "frame": 0
    },
    "reference_id": "frame0",
    "url": "s3://example/scale_nucleus/2021/lidar/0038711321865000.json",
    "type": "pointcloud"
  },
  "example_image_with_info": {
    "metadata": {
      "author": "Picasso"
    },
    "reference_id": "frame0",
    "url": "s3://bucket/0038711321865000.jpg",
    "type": "image"
  }
}
```

Could be represented as the following structure. Note that the field names map to the JSON keys and the usage of field
validators (`@validator`).

```python
import os.path
from pydantic import BaseModel, validator
from typing import Literal


class JsonWithInfo(BaseModel):
    metadata: dict  # any dict is valid
    reference_id: str
    url: str
    type: Literal["pointcloud", "recipe"]

    @validator("url")
    def has_json_extension(cls, v):
        if not v.endswith(".json"):
            raise ValueError(f"Expected '.json' extension got {v}")
        return v


class ImageWithInfo(BaseModel):
    metadata: dict  # any dict is valid
    reference_id: str
    url: str
    type: Literal["image", "mask"]

    @validator("url")
    def has_valid_extension(cls, v):
        valid_extensions = {".jpg", ".jpeg", ".png", ".tiff"}
        _, extension = os.path.splitext(v)
        if extension not in valid_extensions:
            raise ValueError(f"Expected extension in {valid_extensions} got {v}")
        return v


class ExampleNestedModel(BaseModel):
    example_json_with_info: JsonWithInfo
    example_image_with_info: ImageWithInfo

# Usage:
import requests
payload = requests.get("/example")
parsed_model = ExampleNestedModel.parse_obj(payload.json())
requests.post("example/post_to", json=parsed_model.dict())
```

### Migrating to Pydantic

- When migrating an interface from a dictionary use `nucleus.pydantic_base.DictCompatibleModel`. That allows you to get
  the benefits of Pydantic but maintaints backwards compatibility with a Python dictionary by delegating `__getitem__` to
  fields.
- When migrating a frozen dataclass use `nucleus.pydantic_base.ImmutableModel`. That is a base class set up to be
  immutable after initialization.

**Updating documentation:**
We use [Sphinx](https://www.sphinx-doc.org/en/master/) to autogenerate our API Reference from docstrings.

To test your local docstring changes, run the following commands from the repository's root directory:

```
poetry shell
cd docs
sphinx-autobuild . ./_build/html --watch ../nucleus
```

`sphinx-autobuild` will spin up a server on localhost (port 8000 by default) that will watch for and automatically rebuild a version of the API reference based on your local docstring changes.

## Custom Metrics using Shapely in scale-validate

Certain metrics use `Shapely` and `rasterio` which is added as optional dependencies.

```bash
pip install scale-nucleus[metrics]
```

Note that you might need to install a local GEOS package since Shapely doesn't provide binaries bundled with GEOS for every platform.

```bash
#Mac OS
brew install geos
# Ubuntu/Debian flavors
apt-get install libgeos-dev
```

To develop it locally use

`poetry install --extras metrics`


%prep
%autosetup -n scale-nucleus-0.15.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-scale-nucleus -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.15.4-1
- Package Spec generated