1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
%global _empty_manifest_terminate_build 0
Name: python-scETM
Version: 0.5.0
Release: 1
Summary: Single cell embedded topic model for integrated scRNA-seq data analysis.
License: BSD 3-Clause License
URL: https://github.com/hui2000ji/scETM/
Source0: https://mirrors.aliyun.com/pypi/web/packages/bb/76/7eb2b1d0a50783dd5cf5b189c335608b4ed626cf3ebe6c910c7c88aca424/scETM-0.5.0.tar.gz
BuildArch: noarch
Requires: python3-torch
Requires: python3-numpy
Requires: python3-matplotlib
Requires: python3-scikit-learn
Requires: python3-h5py
Requires: python3-pandas
Requires: python3-tqdm
Requires: python3-anndata
Requires: python3-scanpy
Requires: python3-scipy
Requires: python3-louvain
Requires: python3-leidenalg
Requires: python3-psutil
%description
# scETM: single-cell Embedded Topic Model
A generative topic model that facilitates integrative analysis of large-scale single-cell RNA sequencing data.
The full description of scETM and its application on published single cell RNA-seq datasets are available [here](https://www.biorxiv.org/content/10.1101/2021.01.13.426593v1).
This repository includes detailed instructions for installation and requirements, demos, and scripts used for the benchmarking of 7 other state-of-art methods.
## Contents ##
- [scETM: single-cell Embedded Topic Model](#scetm-single-cell-embedded-topic-model)
- [Contents](#contents)
- [1 Model Overview](#1-model-overview)
- [2 Installation](#2-installation)
- [3 Usage](#3-usage)
- [Data format](#data-format)
- [A taste of scETM](#a-taste-of-scetm)
- [p-scETM](#p-scetm)
- [Transfer learning](#transfer-learning)
- [Tensorboard Integration](#tensorboard-integration)
- [4 Benchmarking](#4-benchmarking)
## 1 Model Overview

**(a)** Probabilistic graphical model of scETM. We model the scRNA-profile read count matrix y<sub>d,g</sub> in cell d and gene g across S subjects or studies by a multinomial distribution with the rate parameterized by cell topic mixture θ, topic embedding α, gene embedding ρ, and batch effects λ. **(b)** Matrix factorization view of scETM. **(c)** Encoder architecture for inferring the cell topic mixture θ.
## 2 Installation
Python version: 3.7+
scETM is included in PyPI, so you can install it by
```bash
pip install scETM
```
To enable GPU computing (which significantly boosts the performance), please install [PyTorch](https://pytorch.org/) with GPU support **before** installing scETM.
## 3 Usage
**A step-by-step scETM tutorial can be found in [here](/notebooks/scETM%20introductory%20tutorial.ipynb).**
### Data format
scETM requires a cells-by-genes matrix `adata` as input, in the format of an AnnData object. Detailed description about AnnData can be found [here](https://anndata.readthedocs.io/en/latest/).
By default, scETM looks for batch information in the 'batch_indices' column of the `adata.obs` DataFrame, and cell type identity in the 'cell_types' column. If your data stores the batch and cell type information in different columns, pass them to the `batch_col` and `cell_type_col` arguments, respectively, when calling scETM functions.
### A taste of scETM
```python
from scETM import scETM, UnsupervisedTrainer, evaluate
import anndata
# Prepare the source dataset, Mouse Pancreas
mp = anndata.read_h5ad("MousePancreas.h5ad")
# Initialize model
model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True)
# The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging.
trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results")
# Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches.
trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4)
# Obtain scETM cell, gene and topic embeddings. Unnormalized cell embeddings will be stored at mp.obsm['delta'], normalized cell embeddings at mp.obsm['theta'], gene embeddings at mp.varm['rho'], topic embeddings at mp.uns['alpha'].
model.get_all_embeddings_and_nll(mp)
# Evaluate the model and save the embedding plot
evaluate(mp, embedding_key="delta", plot_fname="scETM_MP", plot_dir="figures/scETM_MP")
```
### p-scETM
p-scETM is a variant of scETM where part or all of the the gene embedding matrix ρ is fixed to a pathways-by-genes matrix, which can be downloaded from the [pathDIP4 pathway database](http://ophid.utoronto.ca/pathDIP/Download.jsp). We only keep pathways that contain more than 5 genes.
If it is desired to fix the gene embedding matrix ρ during training, let trainable_gene_emb_dim be zero. In this case, the gene set used to train the model would be the intersection of the genes in the scRNA-seq data and the genes in the gene-by-pathway matrix. Otherwise, if trainable_gene_emb_dim is set to a positive value, all the genes in the scRNA-seq data would be kept.
### Transfer learning
```python
from scETM import scETM, UnsupervisedTrainer, prepare_for_transfer
import anndata
# Prepare the source dataset, Mouse Pancreas
mp = anndata.read_h5ad("MousePancreas.h5ad")
# Initialize model
model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True)
# The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging.
trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results")
# Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches.
trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4)
# Load the target dataset, Human Pancreas
hp = anndata.read_h5ad('HumanPancreas.h5ad')
# Align the source dataset's gene names (which are mouse genes) to the target dataset (which are human genes)
mp_genes = mp.var_names.str.upper()
mp_genes.drop_duplicates(inplace=True)
# Generate a new model and a modified dataset from the previously trained model and the mp_genes
model, hp = prepare_for_transfer(model, hp, mp_genes,
keep_tgt_unique_genes=True, # Keep target-unique genes in the model and the target dataset
fix_shared_genes=True # Fix parameters related to shared genes in the model
)
# Instantiate another trainer to fine-tune the model
trainer = UnsupervisedTrainer(model, hp, train_instance_name="HP_all_fix", ckpt_dir="../results", init_lr=5e-4)
trainer.train(n_epochs=800, eval_every=200)
```
### Tensorboard Integration
If a Tensorboard SummaryWriter is passed to the `writer` argument of the `UnsupervisedTrainer.train` method, the package will store.
## 4 Benchmarking
The commands used for running [Harmony](https://github.com/immunogenomics/harmony), [Scanorama](https://github.com/brianhie/scanorama), [Seurat](https://satijalab.org/seurat/), [scVAE-GM](https://github.com/scvae/scvae), [scVI](https://github.com/YosefLab/scvi-tools), [LIGER](https://github.com/welch-lab/liger), [scVI-LD](https://www.biorxiv.org/content/10.1101/737601v1.full.pdf) are available in the [scripts](/scripts) folder.
%package -n python3-scETM
Summary: Single cell embedded topic model for integrated scRNA-seq data analysis.
Provides: python-scETM
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scETM
# scETM: single-cell Embedded Topic Model
A generative topic model that facilitates integrative analysis of large-scale single-cell RNA sequencing data.
The full description of scETM and its application on published single cell RNA-seq datasets are available [here](https://www.biorxiv.org/content/10.1101/2021.01.13.426593v1).
This repository includes detailed instructions for installation and requirements, demos, and scripts used for the benchmarking of 7 other state-of-art methods.
## Contents ##
- [scETM: single-cell Embedded Topic Model](#scetm-single-cell-embedded-topic-model)
- [Contents](#contents)
- [1 Model Overview](#1-model-overview)
- [2 Installation](#2-installation)
- [3 Usage](#3-usage)
- [Data format](#data-format)
- [A taste of scETM](#a-taste-of-scetm)
- [p-scETM](#p-scetm)
- [Transfer learning](#transfer-learning)
- [Tensorboard Integration](#tensorboard-integration)
- [4 Benchmarking](#4-benchmarking)
## 1 Model Overview

**(a)** Probabilistic graphical model of scETM. We model the scRNA-profile read count matrix y<sub>d,g</sub> in cell d and gene g across S subjects or studies by a multinomial distribution with the rate parameterized by cell topic mixture θ, topic embedding α, gene embedding ρ, and batch effects λ. **(b)** Matrix factorization view of scETM. **(c)** Encoder architecture for inferring the cell topic mixture θ.
## 2 Installation
Python version: 3.7+
scETM is included in PyPI, so you can install it by
```bash
pip install scETM
```
To enable GPU computing (which significantly boosts the performance), please install [PyTorch](https://pytorch.org/) with GPU support **before** installing scETM.
## 3 Usage
**A step-by-step scETM tutorial can be found in [here](/notebooks/scETM%20introductory%20tutorial.ipynb).**
### Data format
scETM requires a cells-by-genes matrix `adata` as input, in the format of an AnnData object. Detailed description about AnnData can be found [here](https://anndata.readthedocs.io/en/latest/).
By default, scETM looks for batch information in the 'batch_indices' column of the `adata.obs` DataFrame, and cell type identity in the 'cell_types' column. If your data stores the batch and cell type information in different columns, pass them to the `batch_col` and `cell_type_col` arguments, respectively, when calling scETM functions.
### A taste of scETM
```python
from scETM import scETM, UnsupervisedTrainer, evaluate
import anndata
# Prepare the source dataset, Mouse Pancreas
mp = anndata.read_h5ad("MousePancreas.h5ad")
# Initialize model
model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True)
# The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging.
trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results")
# Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches.
trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4)
# Obtain scETM cell, gene and topic embeddings. Unnormalized cell embeddings will be stored at mp.obsm['delta'], normalized cell embeddings at mp.obsm['theta'], gene embeddings at mp.varm['rho'], topic embeddings at mp.uns['alpha'].
model.get_all_embeddings_and_nll(mp)
# Evaluate the model and save the embedding plot
evaluate(mp, embedding_key="delta", plot_fname="scETM_MP", plot_dir="figures/scETM_MP")
```
### p-scETM
p-scETM is a variant of scETM where part or all of the the gene embedding matrix ρ is fixed to a pathways-by-genes matrix, which can be downloaded from the [pathDIP4 pathway database](http://ophid.utoronto.ca/pathDIP/Download.jsp). We only keep pathways that contain more than 5 genes.
If it is desired to fix the gene embedding matrix ρ during training, let trainable_gene_emb_dim be zero. In this case, the gene set used to train the model would be the intersection of the genes in the scRNA-seq data and the genes in the gene-by-pathway matrix. Otherwise, if trainable_gene_emb_dim is set to a positive value, all the genes in the scRNA-seq data would be kept.
### Transfer learning
```python
from scETM import scETM, UnsupervisedTrainer, prepare_for_transfer
import anndata
# Prepare the source dataset, Mouse Pancreas
mp = anndata.read_h5ad("MousePancreas.h5ad")
# Initialize model
model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True)
# The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging.
trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results")
# Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches.
trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4)
# Load the target dataset, Human Pancreas
hp = anndata.read_h5ad('HumanPancreas.h5ad')
# Align the source dataset's gene names (which are mouse genes) to the target dataset (which are human genes)
mp_genes = mp.var_names.str.upper()
mp_genes.drop_duplicates(inplace=True)
# Generate a new model and a modified dataset from the previously trained model and the mp_genes
model, hp = prepare_for_transfer(model, hp, mp_genes,
keep_tgt_unique_genes=True, # Keep target-unique genes in the model and the target dataset
fix_shared_genes=True # Fix parameters related to shared genes in the model
)
# Instantiate another trainer to fine-tune the model
trainer = UnsupervisedTrainer(model, hp, train_instance_name="HP_all_fix", ckpt_dir="../results", init_lr=5e-4)
trainer.train(n_epochs=800, eval_every=200)
```
### Tensorboard Integration
If a Tensorboard SummaryWriter is passed to the `writer` argument of the `UnsupervisedTrainer.train` method, the package will store.
## 4 Benchmarking
The commands used for running [Harmony](https://github.com/immunogenomics/harmony), [Scanorama](https://github.com/brianhie/scanorama), [Seurat](https://satijalab.org/seurat/), [scVAE-GM](https://github.com/scvae/scvae), [scVI](https://github.com/YosefLab/scvi-tools), [LIGER](https://github.com/welch-lab/liger), [scVI-LD](https://www.biorxiv.org/content/10.1101/737601v1.full.pdf) are available in the [scripts](/scripts) folder.
%package help
Summary: Development documents and examples for scETM
Provides: python3-scETM-doc
%description help
# scETM: single-cell Embedded Topic Model
A generative topic model that facilitates integrative analysis of large-scale single-cell RNA sequencing data.
The full description of scETM and its application on published single cell RNA-seq datasets are available [here](https://www.biorxiv.org/content/10.1101/2021.01.13.426593v1).
This repository includes detailed instructions for installation and requirements, demos, and scripts used for the benchmarking of 7 other state-of-art methods.
## Contents ##
- [scETM: single-cell Embedded Topic Model](#scetm-single-cell-embedded-topic-model)
- [Contents](#contents)
- [1 Model Overview](#1-model-overview)
- [2 Installation](#2-installation)
- [3 Usage](#3-usage)
- [Data format](#data-format)
- [A taste of scETM](#a-taste-of-scetm)
- [p-scETM](#p-scetm)
- [Transfer learning](#transfer-learning)
- [Tensorboard Integration](#tensorboard-integration)
- [4 Benchmarking](#4-benchmarking)
## 1 Model Overview

**(a)** Probabilistic graphical model of scETM. We model the scRNA-profile read count matrix y<sub>d,g</sub> in cell d and gene g across S subjects or studies by a multinomial distribution with the rate parameterized by cell topic mixture θ, topic embedding α, gene embedding ρ, and batch effects λ. **(b)** Matrix factorization view of scETM. **(c)** Encoder architecture for inferring the cell topic mixture θ.
## 2 Installation
Python version: 3.7+
scETM is included in PyPI, so you can install it by
```bash
pip install scETM
```
To enable GPU computing (which significantly boosts the performance), please install [PyTorch](https://pytorch.org/) with GPU support **before** installing scETM.
## 3 Usage
**A step-by-step scETM tutorial can be found in [here](/notebooks/scETM%20introductory%20tutorial.ipynb).**
### Data format
scETM requires a cells-by-genes matrix `adata` as input, in the format of an AnnData object. Detailed description about AnnData can be found [here](https://anndata.readthedocs.io/en/latest/).
By default, scETM looks for batch information in the 'batch_indices' column of the `adata.obs` DataFrame, and cell type identity in the 'cell_types' column. If your data stores the batch and cell type information in different columns, pass them to the `batch_col` and `cell_type_col` arguments, respectively, when calling scETM functions.
### A taste of scETM
```python
from scETM import scETM, UnsupervisedTrainer, evaluate
import anndata
# Prepare the source dataset, Mouse Pancreas
mp = anndata.read_h5ad("MousePancreas.h5ad")
# Initialize model
model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True)
# The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging.
trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results")
# Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches.
trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4)
# Obtain scETM cell, gene and topic embeddings. Unnormalized cell embeddings will be stored at mp.obsm['delta'], normalized cell embeddings at mp.obsm['theta'], gene embeddings at mp.varm['rho'], topic embeddings at mp.uns['alpha'].
model.get_all_embeddings_and_nll(mp)
# Evaluate the model and save the embedding plot
evaluate(mp, embedding_key="delta", plot_fname="scETM_MP", plot_dir="figures/scETM_MP")
```
### p-scETM
p-scETM is a variant of scETM where part or all of the the gene embedding matrix ρ is fixed to a pathways-by-genes matrix, which can be downloaded from the [pathDIP4 pathway database](http://ophid.utoronto.ca/pathDIP/Download.jsp). We only keep pathways that contain more than 5 genes.
If it is desired to fix the gene embedding matrix ρ during training, let trainable_gene_emb_dim be zero. In this case, the gene set used to train the model would be the intersection of the genes in the scRNA-seq data and the genes in the gene-by-pathway matrix. Otherwise, if trainable_gene_emb_dim is set to a positive value, all the genes in the scRNA-seq data would be kept.
### Transfer learning
```python
from scETM import scETM, UnsupervisedTrainer, prepare_for_transfer
import anndata
# Prepare the source dataset, Mouse Pancreas
mp = anndata.read_h5ad("MousePancreas.h5ad")
# Initialize model
model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True)
# The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging.
trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results")
# Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches.
trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4)
# Load the target dataset, Human Pancreas
hp = anndata.read_h5ad('HumanPancreas.h5ad')
# Align the source dataset's gene names (which are mouse genes) to the target dataset (which are human genes)
mp_genes = mp.var_names.str.upper()
mp_genes.drop_duplicates(inplace=True)
# Generate a new model and a modified dataset from the previously trained model and the mp_genes
model, hp = prepare_for_transfer(model, hp, mp_genes,
keep_tgt_unique_genes=True, # Keep target-unique genes in the model and the target dataset
fix_shared_genes=True # Fix parameters related to shared genes in the model
)
# Instantiate another trainer to fine-tune the model
trainer = UnsupervisedTrainer(model, hp, train_instance_name="HP_all_fix", ckpt_dir="../results", init_lr=5e-4)
trainer.train(n_epochs=800, eval_every=200)
```
### Tensorboard Integration
If a Tensorboard SummaryWriter is passed to the `writer` argument of the `UnsupervisedTrainer.train` method, the package will store.
## 4 Benchmarking
The commands used for running [Harmony](https://github.com/immunogenomics/harmony), [Scanorama](https://github.com/brianhie/scanorama), [Seurat](https://satijalab.org/seurat/), [scVAE-GM](https://github.com/scvae/scvae), [scVI](https://github.com/YosefLab/scvi-tools), [LIGER](https://github.com/welch-lab/liger), [scVI-LD](https://www.biorxiv.org/content/10.1101/737601v1.full.pdf) are available in the [scripts](/scripts) folder.
%prep
%autosetup -n scETM-0.5.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scETM -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1
- Package Spec generated
|