1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
|
%global _empty_manifest_terminate_build 0
Name: python-scikit-lego
Version: 0.6.14
Release: 1
Summary: a collection of lego bricks for scikit-learn pipelines
License: MIT License
URL: https://scikit-lego.netlify.app/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/71/24/a01d392933898f660ac2f9d667131f5031083cbad06447d05f5cf61257de/scikit-lego-0.6.14.tar.gz
BuildArch: noarch
Requires: python3-scikit-learn
Requires: python3-pandas
Requires: python3-patsy
Requires: python3-autograd
Requires: python3-Deprecated
Requires: python3-umap-learn
Requires: python3-cvxpy
Requires: python3-scikit-learn
Requires: python3-pandas
Requires: python3-patsy
Requires: python3-autograd
Requires: python3-Deprecated
Requires: python3-umap-learn
Requires: python3-cvxpy
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-nbsphinx
Requires: python3-recommonmark
Requires: python3-cvxpy
Requires: python3-flake8
Requires: python3-nbval
Requires: python3-pytest
Requires: python3-pytest-xdist
Requires: python3-black
Requires: python3-pytest-cov
Requires: python3-pytest-mock
Requires: python3-pre-commit
Requires: python3-matplotlib
Requires: python3-jupyter
Requires: python3-jupyterlab
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-nbsphinx
Requires: python3-recommonmark
Requires: python3-cvxpy
Requires: python3-flake8
Requires: python3-nbval
Requires: python3-pytest
Requires: python3-pytest-xdist
Requires: python3-black
Requires: python3-pytest-cov
Requires: python3-pytest-mock
Requires: python3-pre-commit
%description
[](https://github.com/{github_id}/{repository}/workflows/{workflow_name}/badge.svg)
[](https://pepy.tech/project/scikit-lego)
[](https://pypi.org/project/scikit-lego/)
[](https://anaconda.org/conda-forge/scikit-lego)



[](https://github.com/psf/black)
[](https://zenodo.org/badge/latestdoi/166836939)
# scikit-lego
<a href="https://scikit-lego.readthedocs.io/en/latest/"><img src="images/logo.png" width="35%" height="35%" align="right" /></a>
We love scikit learn but very often we find ourselves writing
custom transformers, metrics and models. The goal of this project
is to attempt to consolidate these into a package that offers
code quality/testing. This project started as a collaboration between
multiple companies in the Netherlands but has since received contributions
from around the globe. It was initiated by [Matthijs Brouns](https://www.mbrouns.com/)
and [Vincent D. Warmerdam](https://koaning.io) as a tool to teach people how
to contribute to open source.
Note that we're not formally affiliated with the scikit-learn project at all,
but we aim to strictly adhere to their standards.
The same holds with lego. LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this project.
## Installation
Install `scikit-lego` via pip with
```bash
python -m pip install scikit-lego
```
Via [conda](https://conda.io/projects/conda/en/latest/) with
```bash
conda install -c conda-forge scikit-lego
```
Alternatively, to edit and contribute you can fork/clone and run:
```bash
python -m pip install -e ".[dev]"
python setup.py develop
```
## Documentation
The documentation can be found [here](https://scikit-lego.netlify.app).
## Usage
We offer custom metrics, models and transformers. You can import them just like you would
in scikit-learn.
```python
# the scikit learn stuff we love
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# from scikit lego stuff we add
from sklego.preprocessing import RandomAdder
from sklego.mixture import GMMClassifier
...
mod = Pipeline([
("scale", StandardScaler()),
("random_noise", RandomAdder()),
("model", GMMClassifier())
])
...
```
## Features
Here's a list of features that this library currently offers:
- `sklego.datasets.load_abalone` loads in the abalone dataset
- `sklego.datasets.load_arrests` loads in a dataset with fairness concerns
- `sklego.datasets.load_chicken` loads in the joyful chickweight dataset
- `sklego.datasets.load_heroes` loads a heroes of the storm dataset
- `sklego.datasets.load_hearts` loads a dataset about hearts
- `sklego.datasets.load_penguins` loads a lovely dataset about penguins
- `sklego.datasets.fetch_creditcard` fetch a fraud dataset from openml
- `sklego.datasets.make_simpleseries` make a simulated timeseries
- `sklego.pandas_utils.add_lags` adds lag values in a pandas dataframe
- `sklego.pandas_utils.log_step` a useful decorator to log your pipeline steps
- `sklego.dummy.RandomRegressor` dummy benchmark that predicts random values
- `sklego.linear_model.DeadZoneRegressor` experimental feature that has a deadzone in the cost function
- `sklego.linear_model.DemographicParityClassifier` logistic classifier constrained on demographic parity
- `sklego.linear_model.EqualOpportunityClassifier` logistic classifier constrained on equal opportunity
- `sklego.linear_model.ProbWeightRegression` linear model that treats coefficients as probabilistic weights
- `sklego.linear_model.LowessRegression` locally weighted linear regression
- `sklego.linear_model.LADRegression` least absolute deviation regression
- `sklego.linear_model.QuantileRegression` linear quantile regression, generalizes LADRegression
- `sklego.linear_model.ImbalancedLinearRegression` punish over/under-estimation of a model directly
- `sklego.naive_bayes.GaussianMixtureNB` classifies by training a 1D GMM per column per class
- `sklego.naive_bayes.BayesianGaussianMixtureNB` classifies by training a bayesian 1D GMM per class
- `sklego.mixture.BayesianGMMClassifier` classifies by training a bayesian GMM per class
- `sklego.mixture.BayesianGMMOutlierDetector` detects outliers based on a trained bayesian GMM
- `sklego.mixture.GMMClassifier` classifies by training a GMM per class
- `sklego.mixture.GMMOutlierDetector` detects outliers based on a trained GMM
- `sklego.meta.ConfusionBalancer` experimental feature that allows you to balance the confusion matrix
- `sklego.meta.DecayEstimator` adds decay to the sample_weight that the model accepts
- `sklego.meta.EstimatorTransformer` adds a model output as a feature
- `sklego.meta.OutlierClassifier` turns outlier models into classifiers for gridsearch
- `sklego.meta.GroupedPredictor` can split the data into runs and run a model on each
- `sklego.meta.GroupedTransformer` can split the data into runs and run a transformer on each
- `sklego.meta.SubjectiveClassifier` experimental feature to add a prior to your classifier
- `sklego.meta.Thresholder` meta model that allows you to gridsearch over the threshold
- `sklego.meta.RegressionOutlierDetector` meta model that finds outliers by adding a threshold to regression
- `sklego.meta.ZeroInflatedRegressor` predicts zero or applies a regression based on a classifier
- `sklego.preprocessing.ColumnCapper` limits extreme values of the model features
- `sklego.preprocessing.ColumnDropper` drops a column from pandas
- `sklego.preprocessing.ColumnSelector` selects columns based on column name
- `sklego.preprocessing.InformationFilter` transformer that can de-correlate features
- `sklego.preprocessing.IdentityTransformer` returns the same data, allows for concatenating pipelines
- `sklego.preprocessing.OrthogonalTransformer` makes all features linearly independent
- `sklego.preprocessing.PandasTypeSelector` selects columns based on pandas type
- `sklego.preprocessing.PatsyTransformer` applies a [patsy](https://patsy.readthedocs.io/en/latest/formulas.html) formula
- `sklego.preprocessing.RandomAdder` adds randomness in training
- `sklego.preprocessing.RepeatingBasisFunction` repeating feature engineering, useful for timeseries
- `sklego.preprocessing.DictMapper` assign numeric values on categorical columns
- `sklego.preprocessing.OutlierRemover` experimental method to remove outliers during training
- `sklego.model_selection.GroupTimeSeriesSplit` timeseries Kfold for groups with different amount of observations per group
- `sklego.model_selection.KlusterFoldValidation` experimental feature that does K folds based on clustering
- `sklego.model_selection.TimeGapSplit` timeseries Kfold with a gap between train/test
- `sklego.pipeline.DebugPipeline` adds debug information to make debugging easier
- `sklego.pipeline.make_debug_pipeline` shorthand function to create a debugable pipeline
- `sklego.metrics.correlation_score` calculates correlation between model output and feature
- `sklego.metrics.equal_opportunity_score` calculates equal opportunity metric
- `sklego.metrics.p_percent_score` proxy for model fairness with regards to sensitive attribute
- `sklego.metrics.subset_score` calculate a score on a subset of your data (meant for fairness tracking)
## New Features
We want to be rather open here in what we accept but we do demand three
things before they become added to the project:
1. any new feature contributes towards a demonstratable real-world usecase
2. any new feature passes standard unit tests (we use the ones from scikit-learn)
3. the feature has been discussed in the issue list beforehand
We automate all of our testing and use pre-commit hooks to keep the code working.
%package -n python3-scikit-lego
Summary: a collection of lego bricks for scikit-learn pipelines
Provides: python-scikit-lego
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scikit-lego
[](https://github.com/{github_id}/{repository}/workflows/{workflow_name}/badge.svg)
[](https://pepy.tech/project/scikit-lego)
[](https://pypi.org/project/scikit-lego/)
[](https://anaconda.org/conda-forge/scikit-lego)



[](https://github.com/psf/black)
[](https://zenodo.org/badge/latestdoi/166836939)
# scikit-lego
<a href="https://scikit-lego.readthedocs.io/en/latest/"><img src="images/logo.png" width="35%" height="35%" align="right" /></a>
We love scikit learn but very often we find ourselves writing
custom transformers, metrics and models. The goal of this project
is to attempt to consolidate these into a package that offers
code quality/testing. This project started as a collaboration between
multiple companies in the Netherlands but has since received contributions
from around the globe. It was initiated by [Matthijs Brouns](https://www.mbrouns.com/)
and [Vincent D. Warmerdam](https://koaning.io) as a tool to teach people how
to contribute to open source.
Note that we're not formally affiliated with the scikit-learn project at all,
but we aim to strictly adhere to their standards.
The same holds with lego. LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this project.
## Installation
Install `scikit-lego` via pip with
```bash
python -m pip install scikit-lego
```
Via [conda](https://conda.io/projects/conda/en/latest/) with
```bash
conda install -c conda-forge scikit-lego
```
Alternatively, to edit and contribute you can fork/clone and run:
```bash
python -m pip install -e ".[dev]"
python setup.py develop
```
## Documentation
The documentation can be found [here](https://scikit-lego.netlify.app).
## Usage
We offer custom metrics, models and transformers. You can import them just like you would
in scikit-learn.
```python
# the scikit learn stuff we love
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# from scikit lego stuff we add
from sklego.preprocessing import RandomAdder
from sklego.mixture import GMMClassifier
...
mod = Pipeline([
("scale", StandardScaler()),
("random_noise", RandomAdder()),
("model", GMMClassifier())
])
...
```
## Features
Here's a list of features that this library currently offers:
- `sklego.datasets.load_abalone` loads in the abalone dataset
- `sklego.datasets.load_arrests` loads in a dataset with fairness concerns
- `sklego.datasets.load_chicken` loads in the joyful chickweight dataset
- `sklego.datasets.load_heroes` loads a heroes of the storm dataset
- `sklego.datasets.load_hearts` loads a dataset about hearts
- `sklego.datasets.load_penguins` loads a lovely dataset about penguins
- `sklego.datasets.fetch_creditcard` fetch a fraud dataset from openml
- `sklego.datasets.make_simpleseries` make a simulated timeseries
- `sklego.pandas_utils.add_lags` adds lag values in a pandas dataframe
- `sklego.pandas_utils.log_step` a useful decorator to log your pipeline steps
- `sklego.dummy.RandomRegressor` dummy benchmark that predicts random values
- `sklego.linear_model.DeadZoneRegressor` experimental feature that has a deadzone in the cost function
- `sklego.linear_model.DemographicParityClassifier` logistic classifier constrained on demographic parity
- `sklego.linear_model.EqualOpportunityClassifier` logistic classifier constrained on equal opportunity
- `sklego.linear_model.ProbWeightRegression` linear model that treats coefficients as probabilistic weights
- `sklego.linear_model.LowessRegression` locally weighted linear regression
- `sklego.linear_model.LADRegression` least absolute deviation regression
- `sklego.linear_model.QuantileRegression` linear quantile regression, generalizes LADRegression
- `sklego.linear_model.ImbalancedLinearRegression` punish over/under-estimation of a model directly
- `sklego.naive_bayes.GaussianMixtureNB` classifies by training a 1D GMM per column per class
- `sklego.naive_bayes.BayesianGaussianMixtureNB` classifies by training a bayesian 1D GMM per class
- `sklego.mixture.BayesianGMMClassifier` classifies by training a bayesian GMM per class
- `sklego.mixture.BayesianGMMOutlierDetector` detects outliers based on a trained bayesian GMM
- `sklego.mixture.GMMClassifier` classifies by training a GMM per class
- `sklego.mixture.GMMOutlierDetector` detects outliers based on a trained GMM
- `sklego.meta.ConfusionBalancer` experimental feature that allows you to balance the confusion matrix
- `sklego.meta.DecayEstimator` adds decay to the sample_weight that the model accepts
- `sklego.meta.EstimatorTransformer` adds a model output as a feature
- `sklego.meta.OutlierClassifier` turns outlier models into classifiers for gridsearch
- `sklego.meta.GroupedPredictor` can split the data into runs and run a model on each
- `sklego.meta.GroupedTransformer` can split the data into runs and run a transformer on each
- `sklego.meta.SubjectiveClassifier` experimental feature to add a prior to your classifier
- `sklego.meta.Thresholder` meta model that allows you to gridsearch over the threshold
- `sklego.meta.RegressionOutlierDetector` meta model that finds outliers by adding a threshold to regression
- `sklego.meta.ZeroInflatedRegressor` predicts zero or applies a regression based on a classifier
- `sklego.preprocessing.ColumnCapper` limits extreme values of the model features
- `sklego.preprocessing.ColumnDropper` drops a column from pandas
- `sklego.preprocessing.ColumnSelector` selects columns based on column name
- `sklego.preprocessing.InformationFilter` transformer that can de-correlate features
- `sklego.preprocessing.IdentityTransformer` returns the same data, allows for concatenating pipelines
- `sklego.preprocessing.OrthogonalTransformer` makes all features linearly independent
- `sklego.preprocessing.PandasTypeSelector` selects columns based on pandas type
- `sklego.preprocessing.PatsyTransformer` applies a [patsy](https://patsy.readthedocs.io/en/latest/formulas.html) formula
- `sklego.preprocessing.RandomAdder` adds randomness in training
- `sklego.preprocessing.RepeatingBasisFunction` repeating feature engineering, useful for timeseries
- `sklego.preprocessing.DictMapper` assign numeric values on categorical columns
- `sklego.preprocessing.OutlierRemover` experimental method to remove outliers during training
- `sklego.model_selection.GroupTimeSeriesSplit` timeseries Kfold for groups with different amount of observations per group
- `sklego.model_selection.KlusterFoldValidation` experimental feature that does K folds based on clustering
- `sklego.model_selection.TimeGapSplit` timeseries Kfold with a gap between train/test
- `sklego.pipeline.DebugPipeline` adds debug information to make debugging easier
- `sklego.pipeline.make_debug_pipeline` shorthand function to create a debugable pipeline
- `sklego.metrics.correlation_score` calculates correlation between model output and feature
- `sklego.metrics.equal_opportunity_score` calculates equal opportunity metric
- `sklego.metrics.p_percent_score` proxy for model fairness with regards to sensitive attribute
- `sklego.metrics.subset_score` calculate a score on a subset of your data (meant for fairness tracking)
## New Features
We want to be rather open here in what we accept but we do demand three
things before they become added to the project:
1. any new feature contributes towards a demonstratable real-world usecase
2. any new feature passes standard unit tests (we use the ones from scikit-learn)
3. the feature has been discussed in the issue list beforehand
We automate all of our testing and use pre-commit hooks to keep the code working.
%package help
Summary: Development documents and examples for scikit-lego
Provides: python3-scikit-lego-doc
%description help
[](https://github.com/{github_id}/{repository}/workflows/{workflow_name}/badge.svg)
[](https://pepy.tech/project/scikit-lego)
[](https://pypi.org/project/scikit-lego/)
[](https://anaconda.org/conda-forge/scikit-lego)



[](https://github.com/psf/black)
[](https://zenodo.org/badge/latestdoi/166836939)
# scikit-lego
<a href="https://scikit-lego.readthedocs.io/en/latest/"><img src="images/logo.png" width="35%" height="35%" align="right" /></a>
We love scikit learn but very often we find ourselves writing
custom transformers, metrics and models. The goal of this project
is to attempt to consolidate these into a package that offers
code quality/testing. This project started as a collaboration between
multiple companies in the Netherlands but has since received contributions
from around the globe. It was initiated by [Matthijs Brouns](https://www.mbrouns.com/)
and [Vincent D. Warmerdam](https://koaning.io) as a tool to teach people how
to contribute to open source.
Note that we're not formally affiliated with the scikit-learn project at all,
but we aim to strictly adhere to their standards.
The same holds with lego. LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this project.
## Installation
Install `scikit-lego` via pip with
```bash
python -m pip install scikit-lego
```
Via [conda](https://conda.io/projects/conda/en/latest/) with
```bash
conda install -c conda-forge scikit-lego
```
Alternatively, to edit and contribute you can fork/clone and run:
```bash
python -m pip install -e ".[dev]"
python setup.py develop
```
## Documentation
The documentation can be found [here](https://scikit-lego.netlify.app).
## Usage
We offer custom metrics, models and transformers. You can import them just like you would
in scikit-learn.
```python
# the scikit learn stuff we love
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# from scikit lego stuff we add
from sklego.preprocessing import RandomAdder
from sklego.mixture import GMMClassifier
...
mod = Pipeline([
("scale", StandardScaler()),
("random_noise", RandomAdder()),
("model", GMMClassifier())
])
...
```
## Features
Here's a list of features that this library currently offers:
- `sklego.datasets.load_abalone` loads in the abalone dataset
- `sklego.datasets.load_arrests` loads in a dataset with fairness concerns
- `sklego.datasets.load_chicken` loads in the joyful chickweight dataset
- `sklego.datasets.load_heroes` loads a heroes of the storm dataset
- `sklego.datasets.load_hearts` loads a dataset about hearts
- `sklego.datasets.load_penguins` loads a lovely dataset about penguins
- `sklego.datasets.fetch_creditcard` fetch a fraud dataset from openml
- `sklego.datasets.make_simpleseries` make a simulated timeseries
- `sklego.pandas_utils.add_lags` adds lag values in a pandas dataframe
- `sklego.pandas_utils.log_step` a useful decorator to log your pipeline steps
- `sklego.dummy.RandomRegressor` dummy benchmark that predicts random values
- `sklego.linear_model.DeadZoneRegressor` experimental feature that has a deadzone in the cost function
- `sklego.linear_model.DemographicParityClassifier` logistic classifier constrained on demographic parity
- `sklego.linear_model.EqualOpportunityClassifier` logistic classifier constrained on equal opportunity
- `sklego.linear_model.ProbWeightRegression` linear model that treats coefficients as probabilistic weights
- `sklego.linear_model.LowessRegression` locally weighted linear regression
- `sklego.linear_model.LADRegression` least absolute deviation regression
- `sklego.linear_model.QuantileRegression` linear quantile regression, generalizes LADRegression
- `sklego.linear_model.ImbalancedLinearRegression` punish over/under-estimation of a model directly
- `sklego.naive_bayes.GaussianMixtureNB` classifies by training a 1D GMM per column per class
- `sklego.naive_bayes.BayesianGaussianMixtureNB` classifies by training a bayesian 1D GMM per class
- `sklego.mixture.BayesianGMMClassifier` classifies by training a bayesian GMM per class
- `sklego.mixture.BayesianGMMOutlierDetector` detects outliers based on a trained bayesian GMM
- `sklego.mixture.GMMClassifier` classifies by training a GMM per class
- `sklego.mixture.GMMOutlierDetector` detects outliers based on a trained GMM
- `sklego.meta.ConfusionBalancer` experimental feature that allows you to balance the confusion matrix
- `sklego.meta.DecayEstimator` adds decay to the sample_weight that the model accepts
- `sklego.meta.EstimatorTransformer` adds a model output as a feature
- `sklego.meta.OutlierClassifier` turns outlier models into classifiers for gridsearch
- `sklego.meta.GroupedPredictor` can split the data into runs and run a model on each
- `sklego.meta.GroupedTransformer` can split the data into runs and run a transformer on each
- `sklego.meta.SubjectiveClassifier` experimental feature to add a prior to your classifier
- `sklego.meta.Thresholder` meta model that allows you to gridsearch over the threshold
- `sklego.meta.RegressionOutlierDetector` meta model that finds outliers by adding a threshold to regression
- `sklego.meta.ZeroInflatedRegressor` predicts zero or applies a regression based on a classifier
- `sklego.preprocessing.ColumnCapper` limits extreme values of the model features
- `sklego.preprocessing.ColumnDropper` drops a column from pandas
- `sklego.preprocessing.ColumnSelector` selects columns based on column name
- `sklego.preprocessing.InformationFilter` transformer that can de-correlate features
- `sklego.preprocessing.IdentityTransformer` returns the same data, allows for concatenating pipelines
- `sklego.preprocessing.OrthogonalTransformer` makes all features linearly independent
- `sklego.preprocessing.PandasTypeSelector` selects columns based on pandas type
- `sklego.preprocessing.PatsyTransformer` applies a [patsy](https://patsy.readthedocs.io/en/latest/formulas.html) formula
- `sklego.preprocessing.RandomAdder` adds randomness in training
- `sklego.preprocessing.RepeatingBasisFunction` repeating feature engineering, useful for timeseries
- `sklego.preprocessing.DictMapper` assign numeric values on categorical columns
- `sklego.preprocessing.OutlierRemover` experimental method to remove outliers during training
- `sklego.model_selection.GroupTimeSeriesSplit` timeseries Kfold for groups with different amount of observations per group
- `sklego.model_selection.KlusterFoldValidation` experimental feature that does K folds based on clustering
- `sklego.model_selection.TimeGapSplit` timeseries Kfold with a gap between train/test
- `sklego.pipeline.DebugPipeline` adds debug information to make debugging easier
- `sklego.pipeline.make_debug_pipeline` shorthand function to create a debugable pipeline
- `sklego.metrics.correlation_score` calculates correlation between model output and feature
- `sklego.metrics.equal_opportunity_score` calculates equal opportunity metric
- `sklego.metrics.p_percent_score` proxy for model fairness with regards to sensitive attribute
- `sklego.metrics.subset_score` calculate a score on a subset of your data (meant for fairness tracking)
## New Features
We want to be rather open here in what we accept but we do demand three
things before they become added to the project:
1. any new feature contributes towards a demonstratable real-world usecase
2. any new feature passes standard unit tests (we use the ones from scikit-learn)
3. the feature has been discussed in the issue list beforehand
We automate all of our testing and use pre-commit hooks to keep the code working.
%prep
%autosetup -n scikit-lego-0.6.14
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scikit-lego -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.14-1
- Package Spec generated
|