summaryrefslogtreecommitdiff
path: root/python-scikit-multilearn.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-scikit-multilearn.spec')
-rw-r--r--python-scikit-multilearn.spec486
1 files changed, 486 insertions, 0 deletions
diff --git a/python-scikit-multilearn.spec b/python-scikit-multilearn.spec
new file mode 100644
index 0000000..79dcf67
--- /dev/null
+++ b/python-scikit-multilearn.spec
@@ -0,0 +1,486 @@
+%global _empty_manifest_terminate_build 0
+Name: python-scikit-multilearn
+Version: 0.2.0
+Release: 1
+Summary: Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem.
+License: BSD
+URL: http://scikit.ml/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fc/57/4c8951d3613c1cd569910bc3ddd5b3a755ad383297a12004eb2d61eefc06/scikit-multilearn-0.2.0.linux-x86_64.tar.gz
+BuildArch: noarch
+
+
+%description
+# scikit-multilearn
+
+[![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn)
+[![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause)
+[![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
+[![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
+
+__scikit-multilearn__ is a Python module capable of performing multi-label
+learning tasks. It is built on-top of various scientific Python packages
+([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
+follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
+
+- __Website:__ [scikit.ml](http://scikit.ml)
+- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
+
+
+## Features
+
+- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
+
+- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
+
+- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
+
+## Dependencies
+
+In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
+
+### Base dependencies
+```
+scipy
+numpy
+future
+scikit-learn
+liac-arff # for loading ARFF files
+requests # for dataset module
+networkx # for networkX base community detection clusterers
+python-louvain # for networkX base community detection clusterers
+keras
+```
+
+### GPL-incurring dependencies for two clusterers
+```
+python-igraph # for igraph library based clusterers
+python-graphtool # for graphtool base clusterers
+```
+
+Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
+
+## Installation
+
+To install scikit-multilearn, simply type the following command:
+
+```bash
+$ pip install scikit-multilearn
+```
+
+This will install the latest release from the Python package index. If you
+wish to install the bleeding-edge version, then clone this repository and
+run `setup.py`:
+
+```bash
+$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
+$ cd scikit-multilearn
+$ python setup.py
+```
+
+## Basic Usage
+
+Before proceeding to classification, this library assumes that you have
+a dataset with the following matrices:
+
+- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
+- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
+
+Suppose we wanted to use a problem-transformation method called Binary
+Relevance, which treats each label as a separate single-label classification
+problem, to a Support-vector machine (SVM) classifier, we simply perform
+the following tasks:
+
+```python
+# Import BinaryRelevance from skmultilearn
+from skmultilearn.problem_transform import BinaryRelevance
+
+# Import SVC classifier from sklearn
+from sklearn.svm import SVC
+
+# Setup the classifier
+classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
+
+# Train
+classifier.fit(X_train, y_train)
+
+# Predict
+y_pred = classifier.predict(X_test)
+```
+
+More examples and use-cases can be seen in the
+[documentation](http://scikit.ml/api/classify.html). For using the MEKA
+wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
+
+## Contributing
+
+This project is open for contributions. Here are some of the ways for
+you to contribute:
+
+- Bug reports/fix
+- Features requests
+- Use-case demonstrations
+- Documentation updates
+
+In case you want to implement your own multi-label classifier, please
+read our [Developer's Guide](http://scikit.ml/api/base.html) to help
+you integrate your implementation in our API.
+
+To make a contribution, just fork this repository, push the changes
+in your fork, open up an issue, and make a Pull Request!
+
+We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
+
+## Cite
+
+If you used scikit-multilearn in your research or project, please
+cite [our work](https://arxiv.org/abs/1702.01460):
+
+```bibtex
+@ARTICLE{2017arXiv170201460S,
+ author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
+ title = "{A scikit-based Python environment for performing multi-label classification}",
+ journal = {ArXiv e-prints},
+ archivePrefix = "arXiv",
+ eprint = {1702.01460},
+ year = 2017,
+ month = feb
+}
+```
+
+
+
+
+%package -n python3-scikit-multilearn
+Summary: Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem.
+Provides: python-scikit-multilearn
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-scikit-multilearn
+# scikit-multilearn
+
+[![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn)
+[![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause)
+[![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
+[![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
+
+__scikit-multilearn__ is a Python module capable of performing multi-label
+learning tasks. It is built on-top of various scientific Python packages
+([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
+follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
+
+- __Website:__ [scikit.ml](http://scikit.ml)
+- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
+
+
+## Features
+
+- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
+
+- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
+
+- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
+
+## Dependencies
+
+In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
+
+### Base dependencies
+```
+scipy
+numpy
+future
+scikit-learn
+liac-arff # for loading ARFF files
+requests # for dataset module
+networkx # for networkX base community detection clusterers
+python-louvain # for networkX base community detection clusterers
+keras
+```
+
+### GPL-incurring dependencies for two clusterers
+```
+python-igraph # for igraph library based clusterers
+python-graphtool # for graphtool base clusterers
+```
+
+Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
+
+## Installation
+
+To install scikit-multilearn, simply type the following command:
+
+```bash
+$ pip install scikit-multilearn
+```
+
+This will install the latest release from the Python package index. If you
+wish to install the bleeding-edge version, then clone this repository and
+run `setup.py`:
+
+```bash
+$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
+$ cd scikit-multilearn
+$ python setup.py
+```
+
+## Basic Usage
+
+Before proceeding to classification, this library assumes that you have
+a dataset with the following matrices:
+
+- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
+- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
+
+Suppose we wanted to use a problem-transformation method called Binary
+Relevance, which treats each label as a separate single-label classification
+problem, to a Support-vector machine (SVM) classifier, we simply perform
+the following tasks:
+
+```python
+# Import BinaryRelevance from skmultilearn
+from skmultilearn.problem_transform import BinaryRelevance
+
+# Import SVC classifier from sklearn
+from sklearn.svm import SVC
+
+# Setup the classifier
+classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
+
+# Train
+classifier.fit(X_train, y_train)
+
+# Predict
+y_pred = classifier.predict(X_test)
+```
+
+More examples and use-cases can be seen in the
+[documentation](http://scikit.ml/api/classify.html). For using the MEKA
+wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
+
+## Contributing
+
+This project is open for contributions. Here are some of the ways for
+you to contribute:
+
+- Bug reports/fix
+- Features requests
+- Use-case demonstrations
+- Documentation updates
+
+In case you want to implement your own multi-label classifier, please
+read our [Developer's Guide](http://scikit.ml/api/base.html) to help
+you integrate your implementation in our API.
+
+To make a contribution, just fork this repository, push the changes
+in your fork, open up an issue, and make a Pull Request!
+
+We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
+
+## Cite
+
+If you used scikit-multilearn in your research or project, please
+cite [our work](https://arxiv.org/abs/1702.01460):
+
+```bibtex
+@ARTICLE{2017arXiv170201460S,
+ author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
+ title = "{A scikit-based Python environment for performing multi-label classification}",
+ journal = {ArXiv e-prints},
+ archivePrefix = "arXiv",
+ eprint = {1702.01460},
+ year = 2017,
+ month = feb
+}
+```
+
+
+
+
+%package help
+Summary: Development documents and examples for scikit-multilearn
+Provides: python3-scikit-multilearn-doc
+%description help
+# scikit-multilearn
+
+[![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn)
+[![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause)
+[![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
+[![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
+
+__scikit-multilearn__ is a Python module capable of performing multi-label
+learning tasks. It is built on-top of various scientific Python packages
+([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
+follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
+
+- __Website:__ [scikit.ml](http://scikit.ml)
+- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
+
+
+## Features
+
+- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
+
+- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
+
+- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
+
+## Dependencies
+
+In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
+
+### Base dependencies
+```
+scipy
+numpy
+future
+scikit-learn
+liac-arff # for loading ARFF files
+requests # for dataset module
+networkx # for networkX base community detection clusterers
+python-louvain # for networkX base community detection clusterers
+keras
+```
+
+### GPL-incurring dependencies for two clusterers
+```
+python-igraph # for igraph library based clusterers
+python-graphtool # for graphtool base clusterers
+```
+
+Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
+
+## Installation
+
+To install scikit-multilearn, simply type the following command:
+
+```bash
+$ pip install scikit-multilearn
+```
+
+This will install the latest release from the Python package index. If you
+wish to install the bleeding-edge version, then clone this repository and
+run `setup.py`:
+
+```bash
+$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
+$ cd scikit-multilearn
+$ python setup.py
+```
+
+## Basic Usage
+
+Before proceeding to classification, this library assumes that you have
+a dataset with the following matrices:
+
+- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
+- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
+
+Suppose we wanted to use a problem-transformation method called Binary
+Relevance, which treats each label as a separate single-label classification
+problem, to a Support-vector machine (SVM) classifier, we simply perform
+the following tasks:
+
+```python
+# Import BinaryRelevance from skmultilearn
+from skmultilearn.problem_transform import BinaryRelevance
+
+# Import SVC classifier from sklearn
+from sklearn.svm import SVC
+
+# Setup the classifier
+classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
+
+# Train
+classifier.fit(X_train, y_train)
+
+# Predict
+y_pred = classifier.predict(X_test)
+```
+
+More examples and use-cases can be seen in the
+[documentation](http://scikit.ml/api/classify.html). For using the MEKA
+wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
+
+## Contributing
+
+This project is open for contributions. Here are some of the ways for
+you to contribute:
+
+- Bug reports/fix
+- Features requests
+- Use-case demonstrations
+- Documentation updates
+
+In case you want to implement your own multi-label classifier, please
+read our [Developer's Guide](http://scikit.ml/api/base.html) to help
+you integrate your implementation in our API.
+
+To make a contribution, just fork this repository, push the changes
+in your fork, open up an issue, and make a Pull Request!
+
+We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
+
+## Cite
+
+If you used scikit-multilearn in your research or project, please
+cite [our work](https://arxiv.org/abs/1702.01460):
+
+```bibtex
+@ARTICLE{2017arXiv170201460S,
+ author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
+ title = "{A scikit-based Python environment for performing multi-label classification}",
+ journal = {ArXiv e-prints},
+ archivePrefix = "arXiv",
+ eprint = {1702.01460},
+ year = 2017,
+ month = feb
+}
+```
+
+
+
+
+%prep
+%autosetup -n scikit-multilearn-0.2.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-scikit-multilearn -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.0-1
+- Package Spec generated