1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
%global _empty_manifest_terminate_build 0
Name: python-scikit-multilearn
Version: 0.2.0
Release: 1
Summary: Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem.
License: BSD
URL: http://scikit.ml/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fc/57/4c8951d3613c1cd569910bc3ddd5b3a755ad383297a12004eb2d61eefc06/scikit-multilearn-0.2.0.linux-x86_64.tar.gz
BuildArch: noarch
%description
# scikit-multilearn
[](https://badge.fury.io/py/scikit-multilearn)
[](https://opensource.org/licenses/BSD-2-Clause)
[](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
[](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
__scikit-multilearn__ is a Python module capable of performing multi-label
learning tasks. It is built on-top of various scientific Python packages
([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
- __Website:__ [scikit.ml](http://scikit.ml)
- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
## Features
- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
## Dependencies
In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
### Base dependencies
```
scipy
numpy
future
scikit-learn
liac-arff # for loading ARFF files
requests # for dataset module
networkx # for networkX base community detection clusterers
python-louvain # for networkX base community detection clusterers
keras
```
### GPL-incurring dependencies for two clusterers
```
python-igraph # for igraph library based clusterers
python-graphtool # for graphtool base clusterers
```
Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
## Installation
To install scikit-multilearn, simply type the following command:
```bash
$ pip install scikit-multilearn
```
This will install the latest release from the Python package index. If you
wish to install the bleeding-edge version, then clone this repository and
run `setup.py`:
```bash
$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
$ cd scikit-multilearn
$ python setup.py
```
## Basic Usage
Before proceeding to classification, this library assumes that you have
a dataset with the following matrices:
- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
Suppose we wanted to use a problem-transformation method called Binary
Relevance, which treats each label as a separate single-label classification
problem, to a Support-vector machine (SVM) classifier, we simply perform
the following tasks:
```python
# Import BinaryRelevance from skmultilearn
from skmultilearn.problem_transform import BinaryRelevance
# Import SVC classifier from sklearn
from sklearn.svm import SVC
# Setup the classifier
classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
# Train
classifier.fit(X_train, y_train)
# Predict
y_pred = classifier.predict(X_test)
```
More examples and use-cases can be seen in the
[documentation](http://scikit.ml/api/classify.html). For using the MEKA
wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
## Contributing
This project is open for contributions. Here are some of the ways for
you to contribute:
- Bug reports/fix
- Features requests
- Use-case demonstrations
- Documentation updates
In case you want to implement your own multi-label classifier, please
read our [Developer's Guide](http://scikit.ml/api/base.html) to help
you integrate your implementation in our API.
To make a contribution, just fork this repository, push the changes
in your fork, open up an issue, and make a Pull Request!
We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
## Cite
If you used scikit-multilearn in your research or project, please
cite [our work](https://arxiv.org/abs/1702.01460):
```bibtex
@ARTICLE{2017arXiv170201460S,
author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
title = "{A scikit-based Python environment for performing multi-label classification}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1702.01460},
year = 2017,
month = feb
}
```
%package -n python3-scikit-multilearn
Summary: Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem.
Provides: python-scikit-multilearn
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scikit-multilearn
# scikit-multilearn
[](https://badge.fury.io/py/scikit-multilearn)
[](https://opensource.org/licenses/BSD-2-Clause)
[](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
[](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
__scikit-multilearn__ is a Python module capable of performing multi-label
learning tasks. It is built on-top of various scientific Python packages
([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
- __Website:__ [scikit.ml](http://scikit.ml)
- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
## Features
- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
## Dependencies
In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
### Base dependencies
```
scipy
numpy
future
scikit-learn
liac-arff # for loading ARFF files
requests # for dataset module
networkx # for networkX base community detection clusterers
python-louvain # for networkX base community detection clusterers
keras
```
### GPL-incurring dependencies for two clusterers
```
python-igraph # for igraph library based clusterers
python-graphtool # for graphtool base clusterers
```
Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
## Installation
To install scikit-multilearn, simply type the following command:
```bash
$ pip install scikit-multilearn
```
This will install the latest release from the Python package index. If you
wish to install the bleeding-edge version, then clone this repository and
run `setup.py`:
```bash
$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
$ cd scikit-multilearn
$ python setup.py
```
## Basic Usage
Before proceeding to classification, this library assumes that you have
a dataset with the following matrices:
- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
Suppose we wanted to use a problem-transformation method called Binary
Relevance, which treats each label as a separate single-label classification
problem, to a Support-vector machine (SVM) classifier, we simply perform
the following tasks:
```python
# Import BinaryRelevance from skmultilearn
from skmultilearn.problem_transform import BinaryRelevance
# Import SVC classifier from sklearn
from sklearn.svm import SVC
# Setup the classifier
classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
# Train
classifier.fit(X_train, y_train)
# Predict
y_pred = classifier.predict(X_test)
```
More examples and use-cases can be seen in the
[documentation](http://scikit.ml/api/classify.html). For using the MEKA
wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
## Contributing
This project is open for contributions. Here are some of the ways for
you to contribute:
- Bug reports/fix
- Features requests
- Use-case demonstrations
- Documentation updates
In case you want to implement your own multi-label classifier, please
read our [Developer's Guide](http://scikit.ml/api/base.html) to help
you integrate your implementation in our API.
To make a contribution, just fork this repository, push the changes
in your fork, open up an issue, and make a Pull Request!
We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
## Cite
If you used scikit-multilearn in your research or project, please
cite [our work](https://arxiv.org/abs/1702.01460):
```bibtex
@ARTICLE{2017arXiv170201460S,
author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
title = "{A scikit-based Python environment for performing multi-label classification}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1702.01460},
year = 2017,
month = feb
}
```
%package help
Summary: Development documents and examples for scikit-multilearn
Provides: python3-scikit-multilearn-doc
%description help
# scikit-multilearn
[](https://badge.fury.io/py/scikit-multilearn)
[](https://opensource.org/licenses/BSD-2-Clause)
[](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
[](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
__scikit-multilearn__ is a Python module capable of performing multi-label
learning tasks. It is built on-top of various scientific Python packages
([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
- __Website:__ [scikit.ml](http://scikit.ml)
- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
## Features
- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
## Dependencies
In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
### Base dependencies
```
scipy
numpy
future
scikit-learn
liac-arff # for loading ARFF files
requests # for dataset module
networkx # for networkX base community detection clusterers
python-louvain # for networkX base community detection clusterers
keras
```
### GPL-incurring dependencies for two clusterers
```
python-igraph # for igraph library based clusterers
python-graphtool # for graphtool base clusterers
```
Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
## Installation
To install scikit-multilearn, simply type the following command:
```bash
$ pip install scikit-multilearn
```
This will install the latest release from the Python package index. If you
wish to install the bleeding-edge version, then clone this repository and
run `setup.py`:
```bash
$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
$ cd scikit-multilearn
$ python setup.py
```
## Basic Usage
Before proceeding to classification, this library assumes that you have
a dataset with the following matrices:
- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
Suppose we wanted to use a problem-transformation method called Binary
Relevance, which treats each label as a separate single-label classification
problem, to a Support-vector machine (SVM) classifier, we simply perform
the following tasks:
```python
# Import BinaryRelevance from skmultilearn
from skmultilearn.problem_transform import BinaryRelevance
# Import SVC classifier from sklearn
from sklearn.svm import SVC
# Setup the classifier
classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
# Train
classifier.fit(X_train, y_train)
# Predict
y_pred = classifier.predict(X_test)
```
More examples and use-cases can be seen in the
[documentation](http://scikit.ml/api/classify.html). For using the MEKA
wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
## Contributing
This project is open for contributions. Here are some of the ways for
you to contribute:
- Bug reports/fix
- Features requests
- Use-case demonstrations
- Documentation updates
In case you want to implement your own multi-label classifier, please
read our [Developer's Guide](http://scikit.ml/api/base.html) to help
you integrate your implementation in our API.
To make a contribution, just fork this repository, push the changes
in your fork, open up an issue, and make a Pull Request!
We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
## Cite
If you used scikit-multilearn in your research or project, please
cite [our work](https://arxiv.org/abs/1702.01460):
```bibtex
@ARTICLE{2017arXiv170201460S,
author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
title = "{A scikit-based Python environment for performing multi-label classification}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1702.01460},
year = 2017,
month = feb
}
```
%prep
%autosetup -n scikit-multilearn-0.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scikit-multilearn -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.0-1
- Package Spec generated
|