1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
%global _empty_manifest_terminate_build 0
Name: python-scikit-spark
Version: 0.4.0
Release: 1
Summary: Spark acceleration for Scikit-Learn cross validation techniques
License: Apache 2.0
URL: https://github.com/scikit-spark/scikit-spark
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/79/a6/376f8dc174655538d50f8b19441bf82b6c7f327dbb8261a54e6affc5433a/scikit-spark-0.4.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-six
%description
# Spark acceleration for Scikit-Learn
This project is a major re-write of the
[spark-sklearn](https://github.com/databricks/spark-sklearn) project, which
seems to no longer be under development. It focuses specifically on the
acceleration of Scikit-Learn's cross validation functionality using PySpark.
### Improvements over spark-sklearn
`scikit-spark` supports `scikit-learn` versions past 0.19, `spark-sklearn` [have stated that they are probably not
going to support newer versions](https://github.com/databricks/spark-sklearn/issues/113).
The functionality in `scikit-spark` is based on `sklearn.model_selection` module rather than the
deprecated and soon to be removed `sklearn.grid_search`. The new `model_selection` versions
contain several nicer features and `scikit-spark` maintains full compatibility.
## Installation
The package can be installed through pip:
```bash
pip install scikit-spark
```
It has so far only been tested with Spark 2.2.0 and up, but may work with
older versions.
### Supported scikit-learn versions
- 0.18 untested, likely doesn't work
- 0.19 supported
- 0.20 supported
- 0.21 supported (Python 3 only)
- 0.22 supported (Python 3 only)
## Usage
The functionality here is meant to as closely resemble using Scikit-Learn as
possible. By default (with `spark=True`) the `SparkSession` is obtained
internally by calling `SparkSession.builder.getOrCreate()`, so the instantiation
and calling of the functions is the same (You will preferably have already
created a `SparkSession`).
This example is adapted from the Scikit-Learn documentation. It instantiates
a local `SparkSession`, and distributes the cross validation folds and
iterations using this. In actual use, to get the benefit of this package it
should be used distributed across several machines with Spark as running it
locally is slower than the `Scikit-Learn` parallelisation implementation.
```python
from sklearn import svm, datasets
from pyspark.sql import SparkSession
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[0.01, 0.1, 1, 10, 100]}
svc = svm.SVC()
spark = SparkSession.builder\
.master("local[*]")\
.appName("skspark-grid-search-doctests")\
.getOrCreate()
# How to run grid search
from skspark.model_selection import GridSearchCV
gs = GridSearchCV(svc, parameters)
gs.fit(iris.data, iris.target)
# How to run random search
from skspark.model_selection import RandomizedSearchCV
rs = RandomizedSearchCV(spark, svc, parameters)
rs.fit(iris.data, iris.target)
```
## Current and upcoming functionality
- Current
- model_selection.RandomizedSearchCV
- model_selection.GridSearchCV
- Upcoming
- model_selection.cross_val_predict
- model_selection.cross_val_score
*The docstrings are modifications of the Scikit-Learn ones and are still being
converted to specifically refer to this project.*
## Performance optimisations
### Reducing RAM usage
*Coming soon*
%package -n python3-scikit-spark
Summary: Spark acceleration for Scikit-Learn cross validation techniques
Provides: python-scikit-spark
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scikit-spark
# Spark acceleration for Scikit-Learn
This project is a major re-write of the
[spark-sklearn](https://github.com/databricks/spark-sklearn) project, which
seems to no longer be under development. It focuses specifically on the
acceleration of Scikit-Learn's cross validation functionality using PySpark.
### Improvements over spark-sklearn
`scikit-spark` supports `scikit-learn` versions past 0.19, `spark-sklearn` [have stated that they are probably not
going to support newer versions](https://github.com/databricks/spark-sklearn/issues/113).
The functionality in `scikit-spark` is based on `sklearn.model_selection` module rather than the
deprecated and soon to be removed `sklearn.grid_search`. The new `model_selection` versions
contain several nicer features and `scikit-spark` maintains full compatibility.
## Installation
The package can be installed through pip:
```bash
pip install scikit-spark
```
It has so far only been tested with Spark 2.2.0 and up, but may work with
older versions.
### Supported scikit-learn versions
- 0.18 untested, likely doesn't work
- 0.19 supported
- 0.20 supported
- 0.21 supported (Python 3 only)
- 0.22 supported (Python 3 only)
## Usage
The functionality here is meant to as closely resemble using Scikit-Learn as
possible. By default (with `spark=True`) the `SparkSession` is obtained
internally by calling `SparkSession.builder.getOrCreate()`, so the instantiation
and calling of the functions is the same (You will preferably have already
created a `SparkSession`).
This example is adapted from the Scikit-Learn documentation. It instantiates
a local `SparkSession`, and distributes the cross validation folds and
iterations using this. In actual use, to get the benefit of this package it
should be used distributed across several machines with Spark as running it
locally is slower than the `Scikit-Learn` parallelisation implementation.
```python
from sklearn import svm, datasets
from pyspark.sql import SparkSession
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[0.01, 0.1, 1, 10, 100]}
svc = svm.SVC()
spark = SparkSession.builder\
.master("local[*]")\
.appName("skspark-grid-search-doctests")\
.getOrCreate()
# How to run grid search
from skspark.model_selection import GridSearchCV
gs = GridSearchCV(svc, parameters)
gs.fit(iris.data, iris.target)
# How to run random search
from skspark.model_selection import RandomizedSearchCV
rs = RandomizedSearchCV(spark, svc, parameters)
rs.fit(iris.data, iris.target)
```
## Current and upcoming functionality
- Current
- model_selection.RandomizedSearchCV
- model_selection.GridSearchCV
- Upcoming
- model_selection.cross_val_predict
- model_selection.cross_val_score
*The docstrings are modifications of the Scikit-Learn ones and are still being
converted to specifically refer to this project.*
## Performance optimisations
### Reducing RAM usage
*Coming soon*
%package help
Summary: Development documents and examples for scikit-spark
Provides: python3-scikit-spark-doc
%description help
# Spark acceleration for Scikit-Learn
This project is a major re-write of the
[spark-sklearn](https://github.com/databricks/spark-sklearn) project, which
seems to no longer be under development. It focuses specifically on the
acceleration of Scikit-Learn's cross validation functionality using PySpark.
### Improvements over spark-sklearn
`scikit-spark` supports `scikit-learn` versions past 0.19, `spark-sklearn` [have stated that they are probably not
going to support newer versions](https://github.com/databricks/spark-sklearn/issues/113).
The functionality in `scikit-spark` is based on `sklearn.model_selection` module rather than the
deprecated and soon to be removed `sklearn.grid_search`. The new `model_selection` versions
contain several nicer features and `scikit-spark` maintains full compatibility.
## Installation
The package can be installed through pip:
```bash
pip install scikit-spark
```
It has so far only been tested with Spark 2.2.0 and up, but may work with
older versions.
### Supported scikit-learn versions
- 0.18 untested, likely doesn't work
- 0.19 supported
- 0.20 supported
- 0.21 supported (Python 3 only)
- 0.22 supported (Python 3 only)
## Usage
The functionality here is meant to as closely resemble using Scikit-Learn as
possible. By default (with `spark=True`) the `SparkSession` is obtained
internally by calling `SparkSession.builder.getOrCreate()`, so the instantiation
and calling of the functions is the same (You will preferably have already
created a `SparkSession`).
This example is adapted from the Scikit-Learn documentation. It instantiates
a local `SparkSession`, and distributes the cross validation folds and
iterations using this. In actual use, to get the benefit of this package it
should be used distributed across several machines with Spark as running it
locally is slower than the `Scikit-Learn` parallelisation implementation.
```python
from sklearn import svm, datasets
from pyspark.sql import SparkSession
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[0.01, 0.1, 1, 10, 100]}
svc = svm.SVC()
spark = SparkSession.builder\
.master("local[*]")\
.appName("skspark-grid-search-doctests")\
.getOrCreate()
# How to run grid search
from skspark.model_selection import GridSearchCV
gs = GridSearchCV(svc, parameters)
gs.fit(iris.data, iris.target)
# How to run random search
from skspark.model_selection import RandomizedSearchCV
rs = RandomizedSearchCV(spark, svc, parameters)
rs.fit(iris.data, iris.target)
```
## Current and upcoming functionality
- Current
- model_selection.RandomizedSearchCV
- model_selection.GridSearchCV
- Upcoming
- model_selection.cross_val_predict
- model_selection.cross_val_score
*The docstrings are modifications of the Scikit-Learn ones and are still being
converted to specifically refer to this project.*
## Performance optimisations
### Reducing RAM usage
*Coming soon*
%prep
%autosetup -n scikit-spark-0.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scikit-spark -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
- Package Spec generated
|