summaryrefslogtreecommitdiff
path: root/python-scikit-surprise.spec
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 22:00:59 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 22:00:59 +0000
commit1534f421a85582812d4c889e315012e5a35d4179 (patch)
treee07b4054df2d80469863081758005dcab65b4210 /python-scikit-surprise.spec
parentf247c09531554b99a63f3ee21603a4f552549186 (diff)
automatic import of python-scikit-surprise
Diffstat (limited to 'python-scikit-surprise.spec')
-rw-r--r--python-scikit-surprise.spec210
1 files changed, 210 insertions, 0 deletions
diff --git a/python-scikit-surprise.spec b/python-scikit-surprise.spec
new file mode 100644
index 0000000..cbaca60
--- /dev/null
+++ b/python-scikit-surprise.spec
@@ -0,0 +1,210 @@
+%global _empty_manifest_terminate_build 0
+Name: python-scikit-surprise
+Version: 1.1.3
+Release: 1
+Summary: An easy-to-use library for recommender systems.
+License: GPLv3+
+URL: https://surpriselib.com
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/30/e1/f4f78b7dd32feaa6256f000668a6932e81b899d0e5a5f84ab3fd1f5e2743/scikit-surprise-1.1.3.tar.gz
+BuildArch: noarch
+
+
+%description
+[Surprise](https://surpriselib.com) is a Python
+[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
+recommender systems that deal with explicit rating data.
+[Surprise](https://surpriselib.com) **was designed with the
+following purposes in mind**:
+- Give users perfect control over their experiments. To this end, a strong
+ emphasis is laid on
+ [documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
+ have tried to make as clear and precise as possible by pointing out every
+ detail of the algorithms.
+- Alleviate the pain of [Dataset
+ handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
+ Users can use both *built-in* datasets
+ ([Movielens](https://grouplens.org/datasets/movielens/),
+ [Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
+ datasets.
+- Provide various ready-to-use [prediction
+ algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
+ such as [baseline
+ algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
+ [neighborhood
+ methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
+ factorization-based (
+ [SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
+ [PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
+ [SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
+ [NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
+ and [many
+ others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
+ Also, various [similarity
+ measures](https://surprise.readthedocs.io/en/stable/similarities.html)
+ (cosine, MSD, pearson...) are built-in.
+- Make it easy to implement [new algorithm
+ ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
+- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
+ [analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
+ and
+ [compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
+ the algorithms' performance. Cross-validation procedures can be run very
+ easily using powerful CV iterators (inspired by
+ [scikit-learn](https://scikit-learn.org/) excellent tools), as well as
+ [exhaustive search over a set of
+ parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).
+The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
+System Engine*.
+Please note that surprise does not support implicit ratings or content-based
+information.
+
+%package -n python3-scikit-surprise
+Summary: An easy-to-use library for recommender systems.
+Provides: python-scikit-surprise
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-scikit-surprise
+[Surprise](https://surpriselib.com) is a Python
+[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
+recommender systems that deal with explicit rating data.
+[Surprise](https://surpriselib.com) **was designed with the
+following purposes in mind**:
+- Give users perfect control over their experiments. To this end, a strong
+ emphasis is laid on
+ [documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
+ have tried to make as clear and precise as possible by pointing out every
+ detail of the algorithms.
+- Alleviate the pain of [Dataset
+ handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
+ Users can use both *built-in* datasets
+ ([Movielens](https://grouplens.org/datasets/movielens/),
+ [Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
+ datasets.
+- Provide various ready-to-use [prediction
+ algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
+ such as [baseline
+ algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
+ [neighborhood
+ methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
+ factorization-based (
+ [SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
+ [PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
+ [SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
+ [NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
+ and [many
+ others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
+ Also, various [similarity
+ measures](https://surprise.readthedocs.io/en/stable/similarities.html)
+ (cosine, MSD, pearson...) are built-in.
+- Make it easy to implement [new algorithm
+ ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
+- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
+ [analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
+ and
+ [compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
+ the algorithms' performance. Cross-validation procedures can be run very
+ easily using powerful CV iterators (inspired by
+ [scikit-learn](https://scikit-learn.org/) excellent tools), as well as
+ [exhaustive search over a set of
+ parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).
+The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
+System Engine*.
+Please note that surprise does not support implicit ratings or content-based
+information.
+
+%package help
+Summary: Development documents and examples for scikit-surprise
+Provides: python3-scikit-surprise-doc
+%description help
+[Surprise](https://surpriselib.com) is a Python
+[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
+recommender systems that deal with explicit rating data.
+[Surprise](https://surpriselib.com) **was designed with the
+following purposes in mind**:
+- Give users perfect control over their experiments. To this end, a strong
+ emphasis is laid on
+ [documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
+ have tried to make as clear and precise as possible by pointing out every
+ detail of the algorithms.
+- Alleviate the pain of [Dataset
+ handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
+ Users can use both *built-in* datasets
+ ([Movielens](https://grouplens.org/datasets/movielens/),
+ [Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
+ datasets.
+- Provide various ready-to-use [prediction
+ algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
+ such as [baseline
+ algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
+ [neighborhood
+ methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
+ factorization-based (
+ [SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
+ [PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
+ [SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
+ [NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
+ and [many
+ others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
+ Also, various [similarity
+ measures](https://surprise.readthedocs.io/en/stable/similarities.html)
+ (cosine, MSD, pearson...) are built-in.
+- Make it easy to implement [new algorithm
+ ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
+- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
+ [analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
+ and
+ [compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
+ the algorithms' performance. Cross-validation procedures can be run very
+ easily using powerful CV iterators (inspired by
+ [scikit-learn](https://scikit-learn.org/) excellent tools), as well as
+ [exhaustive search over a set of
+ parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).
+The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
+System Engine*.
+Please note that surprise does not support implicit ratings or content-based
+information.
+
+%prep
+%autosetup -n scikit-surprise-1.1.3
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-scikit-surprise -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.3-1
+- Package Spec generated