1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
%global _empty_manifest_terminate_build 0
Name: python-scikit-surprise
Version: 1.1.3
Release: 1
Summary: An easy-to-use library for recommender systems.
License: GPLv3+
URL: https://surpriselib.com
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/30/e1/f4f78b7dd32feaa6256f000668a6932e81b899d0e5a5f84ab3fd1f5e2743/scikit-surprise-1.1.3.tar.gz
BuildArch: noarch
%description
[Surprise](https://surpriselib.com) is a Python
[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
recommender systems that deal with explicit rating data.
[Surprise](https://surpriselib.com) **was designed with the
following purposes in mind**:
- Give users perfect control over their experiments. To this end, a strong
emphasis is laid on
[documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
have tried to make as clear and precise as possible by pointing out every
detail of the algorithms.
- Alleviate the pain of [Dataset
handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
Users can use both *built-in* datasets
([Movielens](https://grouplens.org/datasets/movielens/),
[Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
datasets.
- Provide various ready-to-use [prediction
algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
such as [baseline
algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
[neighborhood
methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
factorization-based (
[SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
[PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
[SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
[NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
and [many
others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
Also, various [similarity
measures](https://surprise.readthedocs.io/en/stable/similarities.html)
(cosine, MSD, pearson...) are built-in.
- Make it easy to implement [new algorithm
ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
[analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
and
[compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
the algorithms' performance. Cross-validation procedures can be run very
easily using powerful CV iterators (inspired by
[scikit-learn](https://scikit-learn.org/) excellent tools), as well as
[exhaustive search over a set of
parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).
The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
System Engine*.
Please note that surprise does not support implicit ratings or content-based
information.
%package -n python3-scikit-surprise
Summary: An easy-to-use library for recommender systems.
Provides: python-scikit-surprise
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scikit-surprise
[Surprise](https://surpriselib.com) is a Python
[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
recommender systems that deal with explicit rating data.
[Surprise](https://surpriselib.com) **was designed with the
following purposes in mind**:
- Give users perfect control over their experiments. To this end, a strong
emphasis is laid on
[documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
have tried to make as clear and precise as possible by pointing out every
detail of the algorithms.
- Alleviate the pain of [Dataset
handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
Users can use both *built-in* datasets
([Movielens](https://grouplens.org/datasets/movielens/),
[Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
datasets.
- Provide various ready-to-use [prediction
algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
such as [baseline
algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
[neighborhood
methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
factorization-based (
[SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
[PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
[SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
[NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
and [many
others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
Also, various [similarity
measures](https://surprise.readthedocs.io/en/stable/similarities.html)
(cosine, MSD, pearson...) are built-in.
- Make it easy to implement [new algorithm
ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
[analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
and
[compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
the algorithms' performance. Cross-validation procedures can be run very
easily using powerful CV iterators (inspired by
[scikit-learn](https://scikit-learn.org/) excellent tools), as well as
[exhaustive search over a set of
parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).
The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
System Engine*.
Please note that surprise does not support implicit ratings or content-based
information.
%package help
Summary: Development documents and examples for scikit-surprise
Provides: python3-scikit-surprise-doc
%description help
[Surprise](https://surpriselib.com) is a Python
[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
recommender systems that deal with explicit rating data.
[Surprise](https://surpriselib.com) **was designed with the
following purposes in mind**:
- Give users perfect control over their experiments. To this end, a strong
emphasis is laid on
[documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
have tried to make as clear and precise as possible by pointing out every
detail of the algorithms.
- Alleviate the pain of [Dataset
handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
Users can use both *built-in* datasets
([Movielens](https://grouplens.org/datasets/movielens/),
[Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
datasets.
- Provide various ready-to-use [prediction
algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
such as [baseline
algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
[neighborhood
methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
factorization-based (
[SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
[PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
[SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
[NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
and [many
others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
Also, various [similarity
measures](https://surprise.readthedocs.io/en/stable/similarities.html)
(cosine, MSD, pearson...) are built-in.
- Make it easy to implement [new algorithm
ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
[analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
and
[compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
the algorithms' performance. Cross-validation procedures can be run very
easily using powerful CV iterators (inspired by
[scikit-learn](https://scikit-learn.org/) excellent tools), as well as
[exhaustive search over a set of
parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).
The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
System Engine*.
Please note that surprise does not support implicit ratings or content-based
information.
%prep
%autosetup -n scikit-surprise-1.1.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scikit-surprise -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.3-1
- Package Spec generated
|