summaryrefslogtreecommitdiff
path: root/python-seg-metrics.spec
blob: 777613b5c662999e9b0a1eb54b4c3741ad5f2ff3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
%global _empty_manifest_terminate_build 0
Name:		python-seg-metrics
Version:	1.1.3
Release:	1
Summary:	A package to compute different segmentation metrics for 2D/3D medical images.
License:	MIT License
URL:		https://github.com/Ordgod/segmentation_metrics
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e2/2a/609b24ca37b73776253bb8e5a120d0f5efa41f6a030e23d889fe9554729a/seg_metrics-1.1.3.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-coverage
Requires:	python3-matplotlib
Requires:	python3-parameterized
Requires:	python3-tqdm
Requires:	python3-medutils
Requires:	python3-PySimpleGUI
Requires:	python3-SimpleITK

%description
# Segmentaion Metrics Package [![DOI](https://zenodo.org/badge/273067948.svg)](https://zenodo.org/badge/latestdoi/273067948)
![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/Ordgod/segmentation_metrics)
![publish workflow status](https://github.com/Jingnan-Jia/segmentation_metrics/actions/workflows/python-publish.yml/badge.svg)
[![codecov](https://codecov.io/gh/Jingnan-Jia/segmentation_metrics/branch/master/graph/badge.svg?token=UO1QSYBEU6)](https://codecov.io/gh/Jingnan-Jia/segmentation_metrics)
![test workflow status](https://github.com/Jingnan-Jia/segmentation_metrics/actions/workflows/test_and_coverage.yml/badge.svg?branch=master)
[![OSCS Status](https://www.oscs1024.com/platform/badge/Jingnan-Jia/segmentation_metrics.svg?size=small)](https://www.oscs1024.com/project/Jingnan-Jia/segmentation_metrics?ref=badge_small)

This is a simple package to compute different metrics for **Medical** image segmentation(images with suffix `.mhd`, `.mha`, `.nii`, `.nii.gz` or `.nrrd`), and write them to csv file.

## Summary
To assess the segmentation performance, there are several different methods. Two main methods are volume-based metrics and distance-based metrics.

## Metrics included
This library computes the following performance metrics for segmentation:
 
### Voxel based metrics
- Dice (F-1)
- Jaccard
- Precision
- Recall
- False positive rate
- False negtive rate
- Volume similarity


The equations for these metrics can be seen in the [wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall).

### Surface Distance based metrics (with spacing as default)
- [Hausdorff distance](https://en.wikipedia.org/wiki/Hausdorff_distance)
- Hausdorff distance 95% percentile
- Mean (Average) surface distance
- Median surface distance
- Std surface distance

**Note**: These metrics are **symmetric**, which means the distance from A to B is the same as the distance from B to A.

For each contour voxel of the segmented volume (A), the Euclidean distance from the closest contour voxel of the reference volume (B) is computed and stored as `list1`. This computation is also performed for the contour voxels of the reference volume (B), stored as `list2`. `list1` and `list2` are merged to get `list3`.
- `Hausdorff distance` is the maximum value of `list3`. 
- `Hausdorff distance 95% percentile` is the 95% percentile of `list3`. 
- `Mean (Average) surface distance` is the mean value of `list3`.
- `Median surface distance` is the median value of `list3`.
- `Std surface distance` is the standard deviation of `list3`. 

**References:**
1. Heimann T, Ginneken B, Styner MA, et al. Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging. 2009;28(8):1251–1265.
2. Yeghiazaryan, Varduhi, and Irina D. Voiculescu. "Family of boundary overlap metrics for the evaluation of medical image segmentation." Journal of Medical Imaging 5.1 (2018): 015006.
3. Ruskó, László, György Bekes, and Márta Fidrich. "Automatic segmentation of the liver from multi-and single-phase contrast-enhanced CT images." Medical Image Analysis 13.6 (2009): 871-882.

## Installation

```shell
$ pip install seg-metrics
```

## Usage
At first, import the package:
```python
import seg_metrics.seg_metrics as sg
```


### Evaluate two batches of images with same filenames from two different folders
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_path = 'data/gdth'  # this folder saves a batch of ground truth images
pred_path = 'data/pred'  # this folder saves the same number of prediction images
csv_file = 'metrics.csv'  # results will be saved to this file and prented on terminal as well. If not set, results 
# will only be shown on terminal.

metrics = sg.write_metrics(labels=labels[1:],  # exclude background
                  gdth_path=gdth_path,
                  pred_path=pred_path,
                  csv_file=csv_file)
print(metrics)  # a list of dictionaries which includes the metrics for each pair of image.
```
After runing the above codes, you can get a **list of dictionaries** `metrics` which contains all the metrics. **Also you can find a `.csv` file containing all metrics in the same directory.** If the `csv_file` is not given, the metrics results will not be saved to disk.

### Evaluate two images
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'  # ground truth image full path
pred_file = 'data/pred.mhd'  # prediction image full path
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels=labels[1:],  # exclude background
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file)
```
After runing the above codes, you can get a **dictionary** `metrics` which contains all the metrics. **Also you can find a `.csv` file containing all metrics in the same directory.**

**Note:** 
1. When evaluating one image, the returned `metrics` is a dictionary.
2. When evaluating a batch of images, the returned `metrics` is a list of dictionaries.

### Evaluate two images with specific metrics
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file,
                  metrics=['dice', 'hd'])
# for only one metric
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file,
                  metrics='msd')  
```

By passing the following parameters to select specific metrics.

```python
- dice:         Dice (F-1)
- jaccard:      Jaccard
- precision:    Precision
- recall:       Recall
- fpr:          False positive rate
- fnr:          False negtive rate
- vs:           Volume similarity

- hd:           Hausdorff distance
- hd95:         Hausdorff distance 95% percentile
- msd:          Mean (Average) surface distance
- mdsd:         Median surface distance
- stdsd:        Std surface distance
```

For example:
```python
labels = [1]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels, gdth_file, pred_file, csv_file, metrics=['dice', 'hd95'])
dice = metrics['dice']
hd95 = metrics['hd95']
```


### Evaluate two images in memory instead of disk
**Note:**
1. The two images must be both numpy.ndarray or SimpleITK.Image.
2. Input arguments are different. Please use `gdth_img` and `pred_img` instead of `gdth_path` and `pred_path`.
3. If evaluating `numpy.ndarray`, the default `spacing` for all dimensions would be `1.0` for distance based metrics.
4. If you want to evaluate `numpy.ndarray` with specific spacing, pass a sequence with the length of image dimension as `spacing`.

```python
labels = [0, 1, 2]
gdth_img = np.array([[0,0,1], 
                     [0,1,2]])
pred_img = np.array([[0,0,1], 
                     [0,2,2]])
csv_file = 'metrics.csv'
spacing = [1, 2]
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_img=gdth_img,
                  pred_img=pred_img,
                  csv_file=csv_file,
                  spacing=spacing,
                  metrics=['dice', 'hd'])
# for only one metrics
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_img=gdth_img,
                  pred_img=pred_img,
                  csv_file=csv_file,
                  spacing=spacing,
                  metrics='msd')  
```

#### About the calculation of surface distance
The default surface distance is calculated based on **fullyConnected** border. To change the default connected type, 
you can set argument `fullyConnected` as `False` as follows.
```python
metrics = sg.write_metrics(labels=[1,2,3],
                        gdth_img=gdth_img,
                        pred_img=pred_img,
                        csv_file=csv_file,
                        fully_connected=False) 
```                  
In 2D image, fullyconnected means 8 neighbor points, while faceconnected means 4 neighbor points.
In 3D image, fullyconnected means 26 neighbor points, while faceconnected means 6 neighbor points.


# How to obtain more metrics? like "False omission rate" or "Accuracy"?
A great number of different metrics, like "False omission rate" or "Accuracy", could be derived from some the [confusion matrics](https://en.wikipedia.org/wiki/Confusion_matrix). To calculate more metrics or design custom metrics, use `TPTNFPFN=True` to return the number of voxels/pixels of true positive (TP), true negative (TN), false positive (FP), false negative (FN) predictions. For example,
```python
metrics = sg.write_metrics(
                        gdth_img=gdth_img,
                        pred_img=pred_img,
                        TPTNFPFN=True) 
tp, tn, fp, fn = metrics['TP'], metrics['TN'], metrics['FP'], metrics['FN']
false_omission_rate = fn/(fn+tn)
accuracy = (tp + tn)/(tp + tn + fp + fn)
```          

# Comparision with medpy
`medpy` also provide functions to calculate metrics for medical images. But `seg-metrics`     
has several advantages.
1. **Faster**. `seg-metrics` is **10 times faster** calculating distance based metrics. This [jupyter 
notebook](https://colab.research.google.com/drive/1gLQghS1d_fWsaJs3G4Ip0GlZHEJFcxDr#scrollTo=mDWvyxW7VExd) could reproduce the results. 
2. **More convenient**. `seg-metrics` can calculate all different metrics in once in one function while 
`medpy` needs to call different functions multiple times which cost more time and code.
3. **More Powerful**. `seg-metrics` can calculate **multi-label** segmentation metrics and save results to 
`.csv` file in good manner, but `medpy` only provides binary segmentation metrics. Comparision can be found in this [jupyter 
notebook](https://colab.research.google.com/drive/1gLQghS1d_fWsaJs3G4Ip0GlZHEJFcxDr#scrollTo=mDWvyxW7VExd).
 


If this repository helps you in anyway, show your love ❤️ by putting a ⭐ on this project. 
I would also appreciate it if you cite the package in your publication. (**Note:** This package is **NOT** approved for clinical use and is intended for research use only. )

#Bibtex

    @misc{Jingnan,
        title  = {A package to compute segmentation metrics: seg-metrics},
        author = {Jingnan Jia},
        url    = {https://github.com/Ordgod/segmentation_metrics}, 
        year   = {2020}, 
        doi = {10.5281/zenodo.3995075}
    }







%package -n python3-seg-metrics
Summary:	A package to compute different segmentation metrics for 2D/3D medical images.
Provides:	python-seg-metrics
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-seg-metrics
# Segmentaion Metrics Package [![DOI](https://zenodo.org/badge/273067948.svg)](https://zenodo.org/badge/latestdoi/273067948)
![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/Ordgod/segmentation_metrics)
![publish workflow status](https://github.com/Jingnan-Jia/segmentation_metrics/actions/workflows/python-publish.yml/badge.svg)
[![codecov](https://codecov.io/gh/Jingnan-Jia/segmentation_metrics/branch/master/graph/badge.svg?token=UO1QSYBEU6)](https://codecov.io/gh/Jingnan-Jia/segmentation_metrics)
![test workflow status](https://github.com/Jingnan-Jia/segmentation_metrics/actions/workflows/test_and_coverage.yml/badge.svg?branch=master)
[![OSCS Status](https://www.oscs1024.com/platform/badge/Jingnan-Jia/segmentation_metrics.svg?size=small)](https://www.oscs1024.com/project/Jingnan-Jia/segmentation_metrics?ref=badge_small)

This is a simple package to compute different metrics for **Medical** image segmentation(images with suffix `.mhd`, `.mha`, `.nii`, `.nii.gz` or `.nrrd`), and write them to csv file.

## Summary
To assess the segmentation performance, there are several different methods. Two main methods are volume-based metrics and distance-based metrics.

## Metrics included
This library computes the following performance metrics for segmentation:
 
### Voxel based metrics
- Dice (F-1)
- Jaccard
- Precision
- Recall
- False positive rate
- False negtive rate
- Volume similarity


The equations for these metrics can be seen in the [wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall).

### Surface Distance based metrics (with spacing as default)
- [Hausdorff distance](https://en.wikipedia.org/wiki/Hausdorff_distance)
- Hausdorff distance 95% percentile
- Mean (Average) surface distance
- Median surface distance
- Std surface distance

**Note**: These metrics are **symmetric**, which means the distance from A to B is the same as the distance from B to A.

For each contour voxel of the segmented volume (A), the Euclidean distance from the closest contour voxel of the reference volume (B) is computed and stored as `list1`. This computation is also performed for the contour voxels of the reference volume (B), stored as `list2`. `list1` and `list2` are merged to get `list3`.
- `Hausdorff distance` is the maximum value of `list3`. 
- `Hausdorff distance 95% percentile` is the 95% percentile of `list3`. 
- `Mean (Average) surface distance` is the mean value of `list3`.
- `Median surface distance` is the median value of `list3`.
- `Std surface distance` is the standard deviation of `list3`. 

**References:**
1. Heimann T, Ginneken B, Styner MA, et al. Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging. 2009;28(8):1251–1265.
2. Yeghiazaryan, Varduhi, and Irina D. Voiculescu. "Family of boundary overlap metrics for the evaluation of medical image segmentation." Journal of Medical Imaging 5.1 (2018): 015006.
3. Ruskó, László, György Bekes, and Márta Fidrich. "Automatic segmentation of the liver from multi-and single-phase contrast-enhanced CT images." Medical Image Analysis 13.6 (2009): 871-882.

## Installation

```shell
$ pip install seg-metrics
```

## Usage
At first, import the package:
```python
import seg_metrics.seg_metrics as sg
```


### Evaluate two batches of images with same filenames from two different folders
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_path = 'data/gdth'  # this folder saves a batch of ground truth images
pred_path = 'data/pred'  # this folder saves the same number of prediction images
csv_file = 'metrics.csv'  # results will be saved to this file and prented on terminal as well. If not set, results 
# will only be shown on terminal.

metrics = sg.write_metrics(labels=labels[1:],  # exclude background
                  gdth_path=gdth_path,
                  pred_path=pred_path,
                  csv_file=csv_file)
print(metrics)  # a list of dictionaries which includes the metrics for each pair of image.
```
After runing the above codes, you can get a **list of dictionaries** `metrics` which contains all the metrics. **Also you can find a `.csv` file containing all metrics in the same directory.** If the `csv_file` is not given, the metrics results will not be saved to disk.

### Evaluate two images
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'  # ground truth image full path
pred_file = 'data/pred.mhd'  # prediction image full path
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels=labels[1:],  # exclude background
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file)
```
After runing the above codes, you can get a **dictionary** `metrics` which contains all the metrics. **Also you can find a `.csv` file containing all metrics in the same directory.**

**Note:** 
1. When evaluating one image, the returned `metrics` is a dictionary.
2. When evaluating a batch of images, the returned `metrics` is a list of dictionaries.

### Evaluate two images with specific metrics
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file,
                  metrics=['dice', 'hd'])
# for only one metric
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file,
                  metrics='msd')  
```

By passing the following parameters to select specific metrics.

```python
- dice:         Dice (F-1)
- jaccard:      Jaccard
- precision:    Precision
- recall:       Recall
- fpr:          False positive rate
- fnr:          False negtive rate
- vs:           Volume similarity

- hd:           Hausdorff distance
- hd95:         Hausdorff distance 95% percentile
- msd:          Mean (Average) surface distance
- mdsd:         Median surface distance
- stdsd:        Std surface distance
```

For example:
```python
labels = [1]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels, gdth_file, pred_file, csv_file, metrics=['dice', 'hd95'])
dice = metrics['dice']
hd95 = metrics['hd95']
```


### Evaluate two images in memory instead of disk
**Note:**
1. The two images must be both numpy.ndarray or SimpleITK.Image.
2. Input arguments are different. Please use `gdth_img` and `pred_img` instead of `gdth_path` and `pred_path`.
3. If evaluating `numpy.ndarray`, the default `spacing` for all dimensions would be `1.0` for distance based metrics.
4. If you want to evaluate `numpy.ndarray` with specific spacing, pass a sequence with the length of image dimension as `spacing`.

```python
labels = [0, 1, 2]
gdth_img = np.array([[0,0,1], 
                     [0,1,2]])
pred_img = np.array([[0,0,1], 
                     [0,2,2]])
csv_file = 'metrics.csv'
spacing = [1, 2]
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_img=gdth_img,
                  pred_img=pred_img,
                  csv_file=csv_file,
                  spacing=spacing,
                  metrics=['dice', 'hd'])
# for only one metrics
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_img=gdth_img,
                  pred_img=pred_img,
                  csv_file=csv_file,
                  spacing=spacing,
                  metrics='msd')  
```

#### About the calculation of surface distance
The default surface distance is calculated based on **fullyConnected** border. To change the default connected type, 
you can set argument `fullyConnected` as `False` as follows.
```python
metrics = sg.write_metrics(labels=[1,2,3],
                        gdth_img=gdth_img,
                        pred_img=pred_img,
                        csv_file=csv_file,
                        fully_connected=False) 
```                  
In 2D image, fullyconnected means 8 neighbor points, while faceconnected means 4 neighbor points.
In 3D image, fullyconnected means 26 neighbor points, while faceconnected means 6 neighbor points.


# How to obtain more metrics? like "False omission rate" or "Accuracy"?
A great number of different metrics, like "False omission rate" or "Accuracy", could be derived from some the [confusion matrics](https://en.wikipedia.org/wiki/Confusion_matrix). To calculate more metrics or design custom metrics, use `TPTNFPFN=True` to return the number of voxels/pixels of true positive (TP), true negative (TN), false positive (FP), false negative (FN) predictions. For example,
```python
metrics = sg.write_metrics(
                        gdth_img=gdth_img,
                        pred_img=pred_img,
                        TPTNFPFN=True) 
tp, tn, fp, fn = metrics['TP'], metrics['TN'], metrics['FP'], metrics['FN']
false_omission_rate = fn/(fn+tn)
accuracy = (tp + tn)/(tp + tn + fp + fn)
```          

# Comparision with medpy
`medpy` also provide functions to calculate metrics for medical images. But `seg-metrics`     
has several advantages.
1. **Faster**. `seg-metrics` is **10 times faster** calculating distance based metrics. This [jupyter 
notebook](https://colab.research.google.com/drive/1gLQghS1d_fWsaJs3G4Ip0GlZHEJFcxDr#scrollTo=mDWvyxW7VExd) could reproduce the results. 
2. **More convenient**. `seg-metrics` can calculate all different metrics in once in one function while 
`medpy` needs to call different functions multiple times which cost more time and code.
3. **More Powerful**. `seg-metrics` can calculate **multi-label** segmentation metrics and save results to 
`.csv` file in good manner, but `medpy` only provides binary segmentation metrics. Comparision can be found in this [jupyter 
notebook](https://colab.research.google.com/drive/1gLQghS1d_fWsaJs3G4Ip0GlZHEJFcxDr#scrollTo=mDWvyxW7VExd).
 


If this repository helps you in anyway, show your love ❤️ by putting a ⭐ on this project. 
I would also appreciate it if you cite the package in your publication. (**Note:** This package is **NOT** approved for clinical use and is intended for research use only. )

#Bibtex

    @misc{Jingnan,
        title  = {A package to compute segmentation metrics: seg-metrics},
        author = {Jingnan Jia},
        url    = {https://github.com/Ordgod/segmentation_metrics}, 
        year   = {2020}, 
        doi = {10.5281/zenodo.3995075}
    }







%package help
Summary:	Development documents and examples for seg-metrics
Provides:	python3-seg-metrics-doc
%description help
# Segmentaion Metrics Package [![DOI](https://zenodo.org/badge/273067948.svg)](https://zenodo.org/badge/latestdoi/273067948)
![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/Ordgod/segmentation_metrics)
![publish workflow status](https://github.com/Jingnan-Jia/segmentation_metrics/actions/workflows/python-publish.yml/badge.svg)
[![codecov](https://codecov.io/gh/Jingnan-Jia/segmentation_metrics/branch/master/graph/badge.svg?token=UO1QSYBEU6)](https://codecov.io/gh/Jingnan-Jia/segmentation_metrics)
![test workflow status](https://github.com/Jingnan-Jia/segmentation_metrics/actions/workflows/test_and_coverage.yml/badge.svg?branch=master)
[![OSCS Status](https://www.oscs1024.com/platform/badge/Jingnan-Jia/segmentation_metrics.svg?size=small)](https://www.oscs1024.com/project/Jingnan-Jia/segmentation_metrics?ref=badge_small)

This is a simple package to compute different metrics for **Medical** image segmentation(images with suffix `.mhd`, `.mha`, `.nii`, `.nii.gz` or `.nrrd`), and write them to csv file.

## Summary
To assess the segmentation performance, there are several different methods. Two main methods are volume-based metrics and distance-based metrics.

## Metrics included
This library computes the following performance metrics for segmentation:
 
### Voxel based metrics
- Dice (F-1)
- Jaccard
- Precision
- Recall
- False positive rate
- False negtive rate
- Volume similarity


The equations for these metrics can be seen in the [wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall).

### Surface Distance based metrics (with spacing as default)
- [Hausdorff distance](https://en.wikipedia.org/wiki/Hausdorff_distance)
- Hausdorff distance 95% percentile
- Mean (Average) surface distance
- Median surface distance
- Std surface distance

**Note**: These metrics are **symmetric**, which means the distance from A to B is the same as the distance from B to A.

For each contour voxel of the segmented volume (A), the Euclidean distance from the closest contour voxel of the reference volume (B) is computed and stored as `list1`. This computation is also performed for the contour voxels of the reference volume (B), stored as `list2`. `list1` and `list2` are merged to get `list3`.
- `Hausdorff distance` is the maximum value of `list3`. 
- `Hausdorff distance 95% percentile` is the 95% percentile of `list3`. 
- `Mean (Average) surface distance` is the mean value of `list3`.
- `Median surface distance` is the median value of `list3`.
- `Std surface distance` is the standard deviation of `list3`. 

**References:**
1. Heimann T, Ginneken B, Styner MA, et al. Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging. 2009;28(8):1251–1265.
2. Yeghiazaryan, Varduhi, and Irina D. Voiculescu. "Family of boundary overlap metrics for the evaluation of medical image segmentation." Journal of Medical Imaging 5.1 (2018): 015006.
3. Ruskó, László, György Bekes, and Márta Fidrich. "Automatic segmentation of the liver from multi-and single-phase contrast-enhanced CT images." Medical Image Analysis 13.6 (2009): 871-882.

## Installation

```shell
$ pip install seg-metrics
```

## Usage
At first, import the package:
```python
import seg_metrics.seg_metrics as sg
```


### Evaluate two batches of images with same filenames from two different folders
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_path = 'data/gdth'  # this folder saves a batch of ground truth images
pred_path = 'data/pred'  # this folder saves the same number of prediction images
csv_file = 'metrics.csv'  # results will be saved to this file and prented on terminal as well. If not set, results 
# will only be shown on terminal.

metrics = sg.write_metrics(labels=labels[1:],  # exclude background
                  gdth_path=gdth_path,
                  pred_path=pred_path,
                  csv_file=csv_file)
print(metrics)  # a list of dictionaries which includes the metrics for each pair of image.
```
After runing the above codes, you can get a **list of dictionaries** `metrics` which contains all the metrics. **Also you can find a `.csv` file containing all metrics in the same directory.** If the `csv_file` is not given, the metrics results will not be saved to disk.

### Evaluate two images
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'  # ground truth image full path
pred_file = 'data/pred.mhd'  # prediction image full path
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels=labels[1:],  # exclude background
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file)
```
After runing the above codes, you can get a **dictionary** `metrics` which contains all the metrics. **Also you can find a `.csv` file containing all metrics in the same directory.**

**Note:** 
1. When evaluating one image, the returned `metrics` is a dictionary.
2. When evaluating a batch of images, the returned `metrics` is a list of dictionaries.

### Evaluate two images with specific metrics
```python
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file,
                  metrics=['dice', 'hd'])
# for only one metric
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_path=gdth_file,
                  pred_path=pred_file,
                  csv_file=csv_file,
                  metrics='msd')  
```

By passing the following parameters to select specific metrics.

```python
- dice:         Dice (F-1)
- jaccard:      Jaccard
- precision:    Precision
- recall:       Recall
- fpr:          False positive rate
- fnr:          False negtive rate
- vs:           Volume similarity

- hd:           Hausdorff distance
- hd95:         Hausdorff distance 95% percentile
- msd:          Mean (Average) surface distance
- mdsd:         Median surface distance
- stdsd:        Std surface distance
```

For example:
```python
labels = [1]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'

metrics = sg.write_metrics(labels, gdth_file, pred_file, csv_file, metrics=['dice', 'hd95'])
dice = metrics['dice']
hd95 = metrics['hd95']
```


### Evaluate two images in memory instead of disk
**Note:**
1. The two images must be both numpy.ndarray or SimpleITK.Image.
2. Input arguments are different. Please use `gdth_img` and `pred_img` instead of `gdth_path` and `pred_path`.
3. If evaluating `numpy.ndarray`, the default `spacing` for all dimensions would be `1.0` for distance based metrics.
4. If you want to evaluate `numpy.ndarray` with specific spacing, pass a sequence with the length of image dimension as `spacing`.

```python
labels = [0, 1, 2]
gdth_img = np.array([[0,0,1], 
                     [0,1,2]])
pred_img = np.array([[0,0,1], 
                     [0,2,2]])
csv_file = 'metrics.csv'
spacing = [1, 2]
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_img=gdth_img,
                  pred_img=pred_img,
                  csv_file=csv_file,
                  spacing=spacing,
                  metrics=['dice', 'hd'])
# for only one metrics
metrics = sg.write_metrics(labels=labels[1:],  # exclude background if needed
                  gdth_img=gdth_img,
                  pred_img=pred_img,
                  csv_file=csv_file,
                  spacing=spacing,
                  metrics='msd')  
```

#### About the calculation of surface distance
The default surface distance is calculated based on **fullyConnected** border. To change the default connected type, 
you can set argument `fullyConnected` as `False` as follows.
```python
metrics = sg.write_metrics(labels=[1,2,3],
                        gdth_img=gdth_img,
                        pred_img=pred_img,
                        csv_file=csv_file,
                        fully_connected=False) 
```                  
In 2D image, fullyconnected means 8 neighbor points, while faceconnected means 4 neighbor points.
In 3D image, fullyconnected means 26 neighbor points, while faceconnected means 6 neighbor points.


# How to obtain more metrics? like "False omission rate" or "Accuracy"?
A great number of different metrics, like "False omission rate" or "Accuracy", could be derived from some the [confusion matrics](https://en.wikipedia.org/wiki/Confusion_matrix). To calculate more metrics or design custom metrics, use `TPTNFPFN=True` to return the number of voxels/pixels of true positive (TP), true negative (TN), false positive (FP), false negative (FN) predictions. For example,
```python
metrics = sg.write_metrics(
                        gdth_img=gdth_img,
                        pred_img=pred_img,
                        TPTNFPFN=True) 
tp, tn, fp, fn = metrics['TP'], metrics['TN'], metrics['FP'], metrics['FN']
false_omission_rate = fn/(fn+tn)
accuracy = (tp + tn)/(tp + tn + fp + fn)
```          

# Comparision with medpy
`medpy` also provide functions to calculate metrics for medical images. But `seg-metrics`     
has several advantages.
1. **Faster**. `seg-metrics` is **10 times faster** calculating distance based metrics. This [jupyter 
notebook](https://colab.research.google.com/drive/1gLQghS1d_fWsaJs3G4Ip0GlZHEJFcxDr#scrollTo=mDWvyxW7VExd) could reproduce the results. 
2. **More convenient**. `seg-metrics` can calculate all different metrics in once in one function while 
`medpy` needs to call different functions multiple times which cost more time and code.
3. **More Powerful**. `seg-metrics` can calculate **multi-label** segmentation metrics and save results to 
`.csv` file in good manner, but `medpy` only provides binary segmentation metrics. Comparision can be found in this [jupyter 
notebook](https://colab.research.google.com/drive/1gLQghS1d_fWsaJs3G4Ip0GlZHEJFcxDr#scrollTo=mDWvyxW7VExd).
 


If this repository helps you in anyway, show your love ❤️ by putting a ⭐ on this project. 
I would also appreciate it if you cite the package in your publication. (**Note:** This package is **NOT** approved for clinical use and is intended for research use only. )

#Bibtex

    @misc{Jingnan,
        title  = {A package to compute segmentation metrics: seg-metrics},
        author = {Jingnan Jia},
        url    = {https://github.com/Ordgod/segmentation_metrics}, 
        year   = {2020}, 
        doi = {10.5281/zenodo.3995075}
    }







%prep
%autosetup -n seg-metrics-1.1.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-seg-metrics -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.3-1
- Package Spec generated