1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
%global _empty_manifest_terminate_build 0
Name: python-seqeval
Version: 1.2.2
Release: 1
Summary: Testing framework for sequence labeling
License: MIT
URL: https://github.com/chakki-works/seqeval
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9d/2d/233c79d5b4e5ab1dbf111242299153f3caddddbb691219f363ad55ce783d/seqeval-1.2.2.tar.gz
BuildArch: noarch
%description
# seqeval
seqeval is a Python framework for sequence labeling evaluation.
seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on.
This is well-tested by using the Perl script [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt),
which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data.
## Support features
seqeval supports following schemes:
- IOB1
- IOB2
- IOE1
- IOE2
- IOBES(only in strict mode)
- BILOU(only in strict mode)
and following metrics:
| metrics | description |
|---|---|
| accuracy_score(y\_true, y\_pred) | Compute the accuracy. |
| precision_score(y\_true, y\_pred) | Compute the precision. |
| recall_score(y\_true, y\_pred) | Compute the recall. |
| f1_score(y\_true, y\_pred) | Compute the F1 score, also known as balanced F-score or F-measure. |
| classification_report(y\_true, y\_pred, digits=2) | Build a text report showing the main classification metrics. `digits` is number of digits for formatting output floating point values. Default value is `2`. |
## Usage
seqeval supports the two evaluation modes. You can specify the following mode to each metrics:
- default
- strict
The default mode is compatible with [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt). If you want to use the default mode, you don't need to specify it:
```python
>>> from seqeval.metrics import accuracy_score
>>> from seqeval.metrics import classification_report
>>> from seqeval.metrics import f1_score
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> f1_score(y_true, y_pred)
0.50
>>> classification_report(y_true, y_pred)
precision recall f1-score support
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```
In strict mode, the inputs are evaluated according to the specified schema. The behavior of the strict mode is different from the default one which is designed to simulate conlleval. If you want to use the strict mode, please specify `mode='strict'` and `scheme` arguments at the same time:
```python
>>> from seqeval.scheme import IOB2
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```
A minimum case to explain differences between the default and strict mode:
```python
>>> from seqeval.metrics import classification_report
>>> from seqeval.scheme import IOB2
>>> y_true = [['B-NP', 'I-NP', 'O']]
>>> y_pred = [['I-NP', 'I-NP', 'O']]
>>> classification_report(y_true, y_pred)
precision recall f1-score support
NP 1.00 1.00 1.00 1
micro avg 1.00 1.00 1.00 1
macro avg 1.00 1.00 1.00 1
weighted avg 1.00 1.00 1.00 1
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
NP 0.00 0.00 0.00 1
micro avg 0.00 0.00 0.00 1
macro avg 0.00 0.00 0.00 1
weighted avg 0.00 0.00 0.00 1
```
## Installation
To install seqeval, simply run:
```bash
pip install seqeval
```
## License
[MIT](https://github.com/chakki-works/seqeval/blob/master/LICENSE)
## Citation
```tex
@misc{seqeval,
title={{seqeval}: A Python framework for sequence labeling evaluation},
url={https://github.com/chakki-works/seqeval},
note={Software available from https://github.com/chakki-works/seqeval},
author={Hiroki Nakayama},
year={2018},
}
```
%package -n python3-seqeval
Summary: Testing framework for sequence labeling
Provides: python-seqeval
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-seqeval
# seqeval
seqeval is a Python framework for sequence labeling evaluation.
seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on.
This is well-tested by using the Perl script [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt),
which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data.
## Support features
seqeval supports following schemes:
- IOB1
- IOB2
- IOE1
- IOE2
- IOBES(only in strict mode)
- BILOU(only in strict mode)
and following metrics:
| metrics | description |
|---|---|
| accuracy_score(y\_true, y\_pred) | Compute the accuracy. |
| precision_score(y\_true, y\_pred) | Compute the precision. |
| recall_score(y\_true, y\_pred) | Compute the recall. |
| f1_score(y\_true, y\_pred) | Compute the F1 score, also known as balanced F-score or F-measure. |
| classification_report(y\_true, y\_pred, digits=2) | Build a text report showing the main classification metrics. `digits` is number of digits for formatting output floating point values. Default value is `2`. |
## Usage
seqeval supports the two evaluation modes. You can specify the following mode to each metrics:
- default
- strict
The default mode is compatible with [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt). If you want to use the default mode, you don't need to specify it:
```python
>>> from seqeval.metrics import accuracy_score
>>> from seqeval.metrics import classification_report
>>> from seqeval.metrics import f1_score
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> f1_score(y_true, y_pred)
0.50
>>> classification_report(y_true, y_pred)
precision recall f1-score support
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```
In strict mode, the inputs are evaluated according to the specified schema. The behavior of the strict mode is different from the default one which is designed to simulate conlleval. If you want to use the strict mode, please specify `mode='strict'` and `scheme` arguments at the same time:
```python
>>> from seqeval.scheme import IOB2
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```
A minimum case to explain differences between the default and strict mode:
```python
>>> from seqeval.metrics import classification_report
>>> from seqeval.scheme import IOB2
>>> y_true = [['B-NP', 'I-NP', 'O']]
>>> y_pred = [['I-NP', 'I-NP', 'O']]
>>> classification_report(y_true, y_pred)
precision recall f1-score support
NP 1.00 1.00 1.00 1
micro avg 1.00 1.00 1.00 1
macro avg 1.00 1.00 1.00 1
weighted avg 1.00 1.00 1.00 1
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
NP 0.00 0.00 0.00 1
micro avg 0.00 0.00 0.00 1
macro avg 0.00 0.00 0.00 1
weighted avg 0.00 0.00 0.00 1
```
## Installation
To install seqeval, simply run:
```bash
pip install seqeval
```
## License
[MIT](https://github.com/chakki-works/seqeval/blob/master/LICENSE)
## Citation
```tex
@misc{seqeval,
title={{seqeval}: A Python framework for sequence labeling evaluation},
url={https://github.com/chakki-works/seqeval},
note={Software available from https://github.com/chakki-works/seqeval},
author={Hiroki Nakayama},
year={2018},
}
```
%package help
Summary: Development documents and examples for seqeval
Provides: python3-seqeval-doc
%description help
# seqeval
seqeval is a Python framework for sequence labeling evaluation.
seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on.
This is well-tested by using the Perl script [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt),
which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data.
## Support features
seqeval supports following schemes:
- IOB1
- IOB2
- IOE1
- IOE2
- IOBES(only in strict mode)
- BILOU(only in strict mode)
and following metrics:
| metrics | description |
|---|---|
| accuracy_score(y\_true, y\_pred) | Compute the accuracy. |
| precision_score(y\_true, y\_pred) | Compute the precision. |
| recall_score(y\_true, y\_pred) | Compute the recall. |
| f1_score(y\_true, y\_pred) | Compute the F1 score, also known as balanced F-score or F-measure. |
| classification_report(y\_true, y\_pred, digits=2) | Build a text report showing the main classification metrics. `digits` is number of digits for formatting output floating point values. Default value is `2`. |
## Usage
seqeval supports the two evaluation modes. You can specify the following mode to each metrics:
- default
- strict
The default mode is compatible with [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt). If you want to use the default mode, you don't need to specify it:
```python
>>> from seqeval.metrics import accuracy_score
>>> from seqeval.metrics import classification_report
>>> from seqeval.metrics import f1_score
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> f1_score(y_true, y_pred)
0.50
>>> classification_report(y_true, y_pred)
precision recall f1-score support
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```
In strict mode, the inputs are evaluated according to the specified schema. The behavior of the strict mode is different from the default one which is designed to simulate conlleval. If you want to use the strict mode, please specify `mode='strict'` and `scheme` arguments at the same time:
```python
>>> from seqeval.scheme import IOB2
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
MISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1
micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```
A minimum case to explain differences between the default and strict mode:
```python
>>> from seqeval.metrics import classification_report
>>> from seqeval.scheme import IOB2
>>> y_true = [['B-NP', 'I-NP', 'O']]
>>> y_pred = [['I-NP', 'I-NP', 'O']]
>>> classification_report(y_true, y_pred)
precision recall f1-score support
NP 1.00 1.00 1.00 1
micro avg 1.00 1.00 1.00 1
macro avg 1.00 1.00 1.00 1
weighted avg 1.00 1.00 1.00 1
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
NP 0.00 0.00 0.00 1
micro avg 0.00 0.00 0.00 1
macro avg 0.00 0.00 0.00 1
weighted avg 0.00 0.00 0.00 1
```
## Installation
To install seqeval, simply run:
```bash
pip install seqeval
```
## License
[MIT](https://github.com/chakki-works/seqeval/blob/master/LICENSE)
## Citation
```tex
@misc{seqeval,
title={{seqeval}: A Python framework for sequence labeling evaluation},
url={https://github.com/chakki-works/seqeval},
note={Software available from https://github.com/chakki-works/seqeval},
author={Hiroki Nakayama},
year={2018},
}
```
%prep
%autosetup -n seqeval-1.2.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-seqeval -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.2-1
- Package Spec generated
|